
JAVA 8 TO JAVA 17: THE NEW GOODIES

JESSE GALLAGHER
CTO - I KNOW SOME GUYS
IP MANAGER - OPENNTF
HTTPS://FROSTILLIC.US
@JESSE@PUB.FROSTILLIC.US

https://frostillic.us

Prerequisites

Comfort with (or willingness to learn) Java

Familiarity with annotations and Java 8 constructs (Optional, etc.) a
plus

YOU DO NOT NEED:

Knowledge of OSGi

Knowledge of XPages

JAVA RELEASE CADENCE AND
DISTRIBUTIONS

The Old Ways

Java 1 through 6 came out at a
pretty steady pace

Things slowed down after Java
6

Domino was stuck at that
version even longer than
everyone else

Java 1.0 1996
Java 1.1 1997
Java 1.2 1998
Java 1.3 2000
Java 1.4 2002
Java 5 2004
Java 6 2006
Java 7 2011
Java 8 2014

The New Ways

Starting with Java 9, there's a
new system

A new release every six
months

Some are considered "LTS"

Originally the plan was every
six releases, now every four

Java 9 Sept. 2017
Java 10 March 2018
Java 11 Sept. 2018

Java 12-16 March 2019-2021
Java 17 Sept. 2021

Java 18-20 March 2022-2023
Java 21 Sept. 2023
Java 22 March 2024

Java Distributions
Java is open source, with multiple providers

Oracle maintains "normal" Java, but its licensing terms have gotten
more restrictive

Eclipse maintains Adoptium, with their version called "Temurin": fully
free and open source

IBM's J9 variant, used in Domino, is open source as "Semeru"

There are others, from Amazon, Microsoft, and more, often suited well
for their cloud platforms

BETTER NULLPOINTEREXCEPTIONS

Better NullPointerExceptions

This is a nice freebie: NPEs now tell you WHAT was null

Employee someGuy = new Employee("Some Guy", "IT", null);
System.out.println(someGuy.id().length());

Exception in thread "main" java.lang.NullPointerException: Cannot invoke "String.length()" because the return value
of "j17test.Employee.id()" is null
 at j17test/j17test.Test.main(Test.java:15)

STRINGS

Strings
.strip(), .stripLeading(), .stripTrailing() - like trim(), but with more knowledge of Unicode
whitespace

.stripIndent() - detects and removes leading indentation, such as in code blocks

.indent(n) - creates indentation

.repeat(n) - repeats a string in place, e.g. "foo ".repeat(2) -> "foo foo "

.isBlank() - checks if the string is empty or only has whitespace

.lines() - returns a Stream of the string split by newlines

.transform(...) - apply a function to make another object, useful in functional-style code

Text Blocks

String foo = """
 I am a multi-line block of
 text, all in one string literal.
 The result is much, much better when
 writing, for example, HTML or other
 code inside Java
""";

HTTPCLIENT

HttpClient

Java has long had HttpUrlConnection and friends

It does the job, but only barely - the mechanics are awkward and it's
pretty light on features

Third-party libraries like Apache HttpClient fill the gaps, but require
dependencies

HttpClient
Added in Java 9, java.net.http.HttpClient is much more featureful

Configuration options are provided in a builder

Supports HTTP/2 and WebSocket (as a client)

Can run async

HttpClient client = HttpClient.newBuilder()
 .authenticator(...)
 .sslContext(...)
 .followRedirects(Redirect.ALWAYS)
 .connectTimeout(Duration.ofMinutes(1))
 .version(Version.HTTP_2)
 .build();

HttpClient

Create HttpRequest objects with a similar builder

Provide a BodyHandler to handle the response - BodyHandlers
contains useful default choices

HttpClient client = HttpClient.newHttpClient();
HttpRequest req = HttpRequest.newBuilder(URI.create("https://mysite.com"))
 .GET()
 .header("Authorization", "Bearer 12345")
 .build();
String result = client.send(req, BodyHandlers.ofString()).body();

RECORDS

Records
Records are a new type, alongside classes, interfaces, annotations, and
enums

Meant to represent immutable data in a compact way

Somewhat conceptually similar to structs in C, though not identical

Similar to Lombok's, but faster due to being built-in

May be of limited use in Domino for a while - they're not bean-type, and our
frameworks don't know what to do with them

(Jakarta EE will if it doesn't already, though)

Records

public record Employee(String name, String department, String id) {
 // Has implicit methods:
 // String name()
 // String department()
 // String id()
 // Also implicit equals, hashCode, and toString
}

SYNTAX SUGAR

Better `instanceof`

`instanceof` can now do an implicit cast

if(obj instanceof String) {
 String someString = (String)obj;
 // ...
} else if(obj instanceof Number) {
 Number someNumber = (Number)obj;
 // ...
} // and so forth

if(obj instanceof String someString) {
 // ...
} else if(obj instanceof Number someNumber) {
 // ...
} // and so forth

Switch expressions

`switch` can now act as an expression

In preview mode and future versions, it can do casts

String result = switch (someString) {
 case "foo" -> "You want Foo";
 case "bar" -> "You want Bar";
 case "baz" -> {
 // extra code here
 yield "You wanted Baz";
 }
 default -> throw new IllegalArgumentException("Unhandled " + someString);
};

Type inference with `var`

The new `var` keyword can be used to infer the type without writing it

Unlike `Object`, the variable will be the actual type of the value

var someString = "hello";
someString.length();

var someNumber = 3;
var methodResult = someMethod();

GRAB BAG

Grab Bag
Private interface methods

"Diamond" operator on anonymous classes

.orElseThrow() on Optional - like .get(), but with clearer meaning

Can't use sun.misc.Base64Encoder anymore

Use java.util.Base64 in 8 and above

java.policy moved from jvm/lib/security -> jvm/conf/security

Use ~/.java.policy on Linux/Docker or whatever it is on Windows

"GOOD TO KNOW" CHANGES

jvm/lib/ext
Gone!

This was common for Domino developers (and, painfully, HCL) to stash JARs
to be present to the whole Java classpath

Useful for agents to avoid memory problems, and useful for XPages to avoid
permissions problems

Domino has long had "ndext" that was on the runtime classpath

Now it's also on the build-time classpath in Designer

...except for XPages, where you have to add libraries manually

Security Manager
Deprecated!

This is a mechanism that dates from the early days of Applets but has,
for some reason, survived to this day

It still remains for now, and still hinders XPages development in the
same way, but it's not long for this world in the core JVM

This is fine, actually:

Java EE Component Move
Several components properly part of (or adjacent to) Java EE are in the core JVM in Java 8:

JAX-B (Object <-> XML mapping)

JAX-WS (SOAP web services)

Activation (don't worry about it)

Common Annotations (don't worry about it)

CORBA (only shows up if you try to compile something with Notes.jar, really)

They're gone in Java 11+, but Domino includes them in "ndext", so you only need to care if
you're doing external development

https://openjdk.org/jeps/320

https://openjdk.org/jeps/320

LESS USEFUL IN DOMINO

Modules

The module system (JPMS) is actually a huge deal

It involved restructuring the internals of the JVM into modules

This happened in Java 9, as part of "Project Jigsaw"

It involves cleaner separation between components

Allows you to define just which parts of the JVM you need, which can
create a slim build for microservices and the like

Modules

We probably won't use them, though

App servers generally paper over the requirements

While some concepts are like OSGi, they are not the same

Domino will always have the full JVM, so the "slim build" aspect
doesn't mean anything

Sealed Classes

Allows you to specify which other classes may extend a base class

public class SomeBase permits ImplClass1, ImplClass2 { }

Of use primarily for things like internal implementations in frameworks

Might be potentially useful in a large team to signal intent

For apps, though, it'd usually be more annoying than it's worth

JAVA 21

Java 21

Domino 14 doesn't include this, so it's not immediately useful

Still, it's good to know for the future and to see where the language is
going

Sequenced Collections
New interfaces more specific than Collection for when the meaning makes
sense

SequencedCollection: there's some sequence - may be a Set, a List, or a
Queue, but there's at least getFirst()/getLast() and friends - plus reversed()

SequencedSet: A nice combination of Set and SequencedCollection.
TreeSet is one of these (and also a SortedSet). You can think of a
NotesDocumentCollection as this sort of thing

SequencedMap: Like SequencedCollection, but for Maps. LinkedHashMap
is one of these (and a good candidate for housing a JSON object)

Virtual Threads

New type of thread that tries to re-use OS threads as possible to
improve scalability

You can mostly use them like normal threads and, for the right type of
heavy workload, they can dramatically reduce resource usage

If you end up trying to use them with a Domino runtime somehow, uh...
good luck - Domino cares a lot about native threads, and virtual
threads are a weird match

Decomposing Record

Combined the improved `instanceof` from 17 with Record types

public class RecordTester {
 record Point(int x, int y) {
 }

 public void doSomethingWith(Object o) {
 if(o instanceof Point(int x, int y)) {
 System.out.println("I have a point with coords " + x + ":" + y);
 }
 }

Pattern Matching
Combined the improved `instanceof` from 17 with the `switch` statement

Can also switch to null, which was a constant annoyance

public void doSomethingWith(Object o) {
 switch(o) {
 case String str -> System.out.println("hey, it's a string: " + str.length());
 case Number num -> System.out.println("It's a number: " + num.doubleValue());
 case null -> System.out.println("I was sent null!");
 default -> System.out.println("I don't know about " + o);
 }
}

Enum Pattern Matching

You can combine the previous with specific enum values for complex
cases

enum ItemType {
 TEXT, NUMBER, COMPOSITE
}

public void checkItemType(Object o) {
 switch(o) {
 case String str -> System.out.println("hey, it's a string: " + str.length());
 case ItemType.TEXT -> System.out.println("I have a text item");
 case ItemType.NUMBER -> System.out.println("I have a number item");
 default -> System.out.println("I don't know about o");
 }
}

Weirder Pattern Matching
You can use `when` to add a "guard" statement

You probably don't want to go too nuts with these

public void guardSomethingWith(Object o) {
 switch(o) {
 case String str when (!str.isEmpty()) -> System.out.println("non-empty string");
 case String str when (str.startsWith("Hello")) -> System.out.println("Friendly greeting");
 default -> System.out.println("I don't know about o");
 }
}

And More!

Snippets in Javadoc

Simple Web Server

Lots of preview features, including further incubation of native
function calls

RESOURCES

Resources
https://www.baeldung.com/java-migrate-8-to-17

https://reflectoring.io/java-release-notes/

https://nipafx.dev/road-to-21-upgrade/

https://www.baeldung.com/java-lts-21-new-features

https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-
17-and-java-21/

https://frostillic.us/blog/posts/2023/12/15/notes-domino-14-fallout

https://www.baeldung.com/java-migrate-8-to-17
https://reflectoring.io/java-release-notes/
https://nipafx.dev/road-to-21-upgrade/
https://www.baeldung.com/java-lts-21-new-features
https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-17-and-java-21/
https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-17-and-java-21/
https://frostillic.us/blog/posts/2023/12/15/notes-domino-14-fallout

THANK YOU
+ QUESTIONS

