JAVA 8 TO JAVA 17: THE NEW GOODIES

JESSE GALLAGHER

https://frostillic.us

JAVA RELEASE CADENGE AND

DISTRIBUTIONS

The New Ways

« Starting with Java 9, there's a
new system

+ A new release every six
months

« Some are considered "LTS"

+ Originally the plan was every
six releases, now every four

Java 9 Sept. 2017
Java 10 March 2018
Java 11 Sept. 2018
Java 12-16 March 2019-2021
Java 17 Sept. 2021
Java 18-20 March 2022-2023
Java 21 Sept. 2023
Java 22 March 2024

Java Distributions

» Java is open source, with multiple providers

. Oracle maintains "normal" Java, but its licensing terms have gotten
more restrictive

» Eclipse maintains Adoptium, with their version called "Temurin": fully
free and open source

» IBM's J9 variant, used in Domino, is open source as "Semeru"

« There are others, from Amazon, Microsoft, and more, often suited well
for their cloud platforms

BETTER NULLPOINTEREXCEPTIONS

BSetter NullPointerExceptions

« This is a nice freebie: NPEs now tell you WHAT was null

Employee someGuy = new Employee("Some Guy", "IT", null);
System.out.println(someGuy.id().length());

Exception in thread "main" java.lang.NullPointerException: Cannot invoke "String.length()" because the return value
of "j17test.Employee.id()" is null
at j17test/j17test. Test.main(Test.java:15)

STRINGS

Strings

*

strip(), .stripLeading(), .stripTrailing() - like trim(), but with more knowledge of Unicode
whitespace

+ .striplndent() - detects and removes leading indentation, such as in code blocks
+ .indent(n) - creates indentation

+ .repeat(n) - repeats a string in place, e.g. "foo ".repeat(2) -> "foo foo "

+ .isBlank() - checks if the string is empty or only has whitespace

+ .lines() - returns a Stream of the string split by newlines

« .transform(...) - apply a function to make another object, useful in functional-style code

Text Blocks

Stering Foo =
I am a multi-1line block of
text, all in one string literal.
The result is much, much better when
writing, for example, HTML or other
code inside Java

mmon
J

HTTPGLIENT

HttpClient

. Added in Java 9, java.net.http.HttpClient is much more featureful
. Configuration options are provided in a builder
. Supports HTTP/2 and WebSocket (as a client)

. Can run async

HttpClient client = HttpClient.newBuilder()
.authenticator(...)
.sslContext(...)
.followRedirects(Redirect.ALWAYS)
.connectTimeout(Duration.ofMinutes(1))
.version(Version.HTTP_2)
Lbuild();

HttpClient

+ Create HttpRequest objects with a similar builder

+ Provide a BodyHandler to handle the response - BodyHandlers
contains useful default choices

HttpClient client = HttpClient.newHttpClient();

HttpRequest req = HttpRequest.newBuilder(URI.create("https://mysite.com"))
GET()
.header("Authorization", "Bearer 12345")
JButld()

String result = client.send(req, BodyHandlers.ofString()).body();

RECORDS

Records

Records are a new type, alongside classes, interfaces, annotations, and
enums

Meant to represent immutable data in a compact way
Somewhat conceptually similar to structs in C, though not identical
Similar to Lombok's, but faster due to being built-in

+ May be of limited use in Domino for a while - they're not bean-type, and our
frameworks don't know what to do with them

» (Jakarta EE will if it doesn't already, though)

SYNTAX SUGAR

Switch expressions

« switch' can now act as an expression

« In preview mode and future versions, it can do casts

String result = switch (someString) {

T

case ‘'foo® -> ‘You want Foo';
case 'bar’. -> "'You want Bar-:
case "baz" -> {

// extra code here

yield "You wanted Baz";

}
default -> throw new IllegalArgumentException("Unhandled " + someString);

Type inference with var

. The new var keyword can be used to infer the type without writing it

. Unlike Object, the variable will be the actual type of the value

var someString = "hello";
someString.length();

var someNumber = 3;

var methodResult someMethod();

GRAB BAG

Grab Bag

Private interface methods

*

"Diamond" operator on anonymous classes

*

.orElseThrow() on Optional - like .get(), but with clearer meaning

*

Can't use sun.misc.Base64Encoder anymore

*

+ Use java.util.Base64 in 8 and above

java.policy moved from jvm/lib/security -> jvm/conf/security

*

» Use ~/.java.policy on Linux/Docker or whatever it is on Windows

"GOOD TO KNOW" CHANGES

jvm/lib/ext

. Gone!

. This was common for Domino developers (and, painfully, HCL) to stash JARs
to be present to the whole Java classpath

. Useful for agents to avoid memory problems, and useful for XPages to avoid
permissions problems

» Domino has long had "ndext" that was on the runtime classpath
» Now it's also on the build-time classpath in Designer

» ...except for XPages, where you have to add libraries manually

>

Security Manager

+ Deprecated!

+ This is a mechanism that dates from the early days of Applets but has,
for some reason, survived to this day

« It still remains for now, and still hinders XPages development in the
same way, but it's not long for this world in the core JVM

« This is fine, actually:

NG: A terminally deprecated method in java.lang.System has been called

ARMN
WARMING: System::setSecurityManager has been called by lotus.notes.AgentSecurityManager (file: /C:/Dominosndext-Motes.jar)
WARNIN
JARMING: System::setSecurityManager will be removed in a future release

: Please consider reporting this to the maintainers of lotus.notes.AgentSecurityManager

Java EE Component Move

. Several components properly part of (or adjacent to) Java EE are in the core JVM in Java 8:
. JAX-B (Object <-> XML mapping)
. JAX-WS (SOAP web services)
. Activation (don't worry about it)
. Common Annotations (don't worry about it)
. CORBA (only shows up if you try to compile something with Notes.jar, really)

. They're gone in Java 11+, but Domino includes them in "ndext", so you only need to care if
you're doing external development

. https://openjdk.org/jeps/320

https://openjdk.org/jeps/320

LESS USEFUL IN DOMINO

Modules

« The module system (JPMS) is actually a huge deal
+ It involved restructuring the internals of the JVM into modules
« This happened in Java 9, as part of "Project Jigsaw"

« It involves cleaner separation between components

+ Allows you to define just which parts of the JVM you need, which can
create a slim build for microservices and the like

Modules

We probably won't use them, though

*

App servers generally paper over the requirements

*

*

While some concepts are like OSGi, they are not the same

Domino will always have the full JVM, so the "slim build" aspect
doesn't mean anything

*

Sealed Classes

Allows you to specify which other classes may extend a base class

*

+ public class SomeBase permits ImplClass1, ImplClass2 { }

Of use primarily for things like internal implementations in frameworks

*

Might be potentially useful in a large team to signal intent

*

*

For apps, though, it'd usually be more annoying than it's worth

JAVA 21

Sequenced Collections

. New interfaces more specific than Collection for when the meaning makes
sense

. SequencedCollection: there's some sequence - may be a Set, a List, or a
Queue, but there's at least getFirst()/getLast() and friends - plus reversed()

. SequencedSet: A nice combination of Set and SequencedCollection.
TreeSet is one of these (and also a SortedSet). You can think of a
NotesDocumentCollection as this sort of thing

. SequencedMap: Like SequencedCollection, but for Maps. LinkedHashMap
is one of these (and a good candidate for housing a JSON obiject)

Virtual Threads

+ New type of thread that tries to re-use OS threads as possible to
improve scalability

» You can mostly use them like normal threads and, for the right type of
heavy workload, they can dramatically reduce resource usage

« If you end up trying to use them with a Domino runtime somehow, uh...
good luck - Domino cares a /ot about native threads, and virtual
threads are a weird match

Decomposing Record

. Combined the improved instanceof from 17 with Record types

public class RecordTester {
record Point(int X, int y) {

}

public void doSomethingWith(Object o) {
if(o instanceof Point(int x, int y)) {
System.out.println("I have a point with coords

¥
¥

+ Xk 2 oty

Pattern Matching

. Combined the improved ‘instanceof from 17 with the 'switch statement

. Can also switch to null, which was a constant annoyance

public void doSomethingWith(Object o) {
switch(o) {
case String str -> System.out.println("hey, it's a string: " + str.length());
case Number num -> System.out.println("It's a number: " + num.doubleValue());
case null -> System.out.println("I was sent null!");
default -> System.out.println("I don't know about " + 0);

—num Pattern Matching

+ You can combine the previous with specific enum values for complex
cases

enum ItemType {
TEXT, NUMBER, COMPOSITE

}

public void checkItemType(Object o) {
switch(o) {
case String str -> System.out.println("hey, it's a string: " + str.length());
case ItemType.TEXT -> System.out.println("I have a text item");

case ItemType.NUMBER -> System.out.println("I have a number item");
default -> System.out.println("I don't know about 0");

Welrder Pattern Matching

« You can use when to add a "guard" statement

+ You probably don't want to go too nuts with these

public void guardSomethingWith(Object o) {
switch(o) {
case String str when (!str.isEmpty()) -> System.out.println("non-empty string");
case String str when (str.startsWith("Hello")) -> System.out.println("Friendly greeting");
default -> System.out.println("I don't know about o");
}
}

»*

Resources

https://www.baeldung.com/java-migrate-8-to-17

https://reflectoring.io/java-release-notes/

https://nipafx.dev/road-to-21-upgrade/

https://www.baeldung.com/java-lts-21-new-features

https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-
17-and-java-21/

https://frostillic.us/blog/posts/2023/12/15/notes-domino-14-fallout

https://www.baeldung.com/java-migrate-8-to-17
https://reflectoring.io/java-release-notes/
https://nipafx.dev/road-to-21-upgrade/
https://www.baeldung.com/java-lts-21-new-features
https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-17-and-java-21/
https://mydeveloperplanet.com/2023/11/01/whats-new-between-java-17-and-java-21/
https://frostillic.us/blog/posts/2023/12/15/notes-domino-14-fallout

THANK YOU

+ QUESTIONS

