
Testing Matters – Don’t Let Users
Test Your Code!

An introduction to automated testing,
focusing on End-to-End Testing of browser-based applications

Paul Harrison
Martin Davies

Version 3.0.0, 20th July 2023

•Developer at FoCul, focusing on Front-end development
using Angular

•Over 20 years' experience with HCL Notes/Domino -
everything from support and administration, to
infrastructure, migrations and development

Email: paul.harrison@focul.net

Twitter: @PaulHarrison

About Paul Harrison

•Delivery and Technical lead at FoCul
•Worked with Notes/Domino and associated technologies

since 1993- Admin, Dev, Infrastructure, Associated
Technologies, Consultancy
•Consequently “Jack of All Trades, Master of None ☺”
•Bell Ringer and Runner

Email: martin.davies@focul.net

Twitter: @martin_davies

About Martin Davies

• Introduction
•Approaches
•Methodologies
•Other Test Considerations
• End-to-End Testing using Cypress
•How-to and Demo
• XPages Hints and Tips
• Best Practices
• Summary

Agenda

•Testing is expensive

•Manual test plans can be inconsistent and prone to
human error

•Testing environments can be complex to setup and
manage

•Commercial testing tools were prohibitively expensive,
particularly for smaller organisations

Introduction - Testing Challenges

•Gives your organisation and your customers increased
confidence in your shipped products

•Consistent, highly repeatable and reusable

•Self-documenting

•Allows you to more frequently ship application updates

•Fewer shipped bugs == reduced support tickets

•Free to use Open-Source or low-cost tools now available

Introduction - Automated Testing

Each layer of the pyramid has a different size,
indicating the number of tests that could be written within each stage

Credit: https://www.ministryoftesting.com/dojo/lessons/the-mobile-test-pyramid

End-to-End Tests (E2E)
• Tests the application User Interface

independently of its actual code
• Runs at application-level
• Language & framework agnostic

Integration Tests
• Tests how libraries or packages of functions

integrate and interact with each other
• Runs at code-level
• Language & framework specific

Unit Tests
• Tests basic functions
• Runs at code-level
• Language specific

Testing Approaches

Code Driven Development
• Develop tests after coding
• Easier to start with, as you likely already have some code to test
• Better suited to adding tests to existing code

Test Driven Development (TDD)
• Develop tests before any code (based on provided design specs)
• Can make for more efficient code (like flowcharting prior to coding)
• Can be a difficult concept to grasp
• Better suited to Unit and Integration testing or when starting to develop

new code

Testing Methodologies

Test Coverage
• What percent of your code is tested
• Your goal should not necessarily be 100% test coverage of the entire

application (Unit, Integration and E2E tests could each have different
percentages), but rather to ensure that you test a reasonable percentage
of the code, and focus on those areas that are critical

• 60% - 80% is usually considered very good

Consistent Test Data
• Sample data (fixed or easily resettable)
• Mock or fake data (artificially inserted into the response payload of an API

request)

Other Testing Considerations

•Easy to quickly produce usable tests

•Allows testing of user workflows (aka ‘journeys’ or
‘stories’), as well as the UI and DOM styling and layout

•Can focus on writing tests without having to worry about
how the code itself works

•Does not necessarily require development skills - can
delegate to more junior colleagues or QA Team

Why Focus on End-to-End Testing?

Cypress incorporates some of the “best-in-breed”,

open-source testing libraries

Credit: https://www.cypress.io/how-it-works

Introducing Cypress (1/3)

•Tests run inside the actual browser (tests written in
JavaScript/Typescript)

•Very well documented with lots of good examples

•Free to use, Open Source and under active development

•Supports “live-reload” and can run in foreground, or
headless mode

•Responsiveness capability using pre-set or custom
viewport sizes

Introducing Cypress (2/3)

• Time Travel – DOM snapshots during test execution and
review
•Automatically waits for commands and assertions
• Extensible - custom functions, and 3rd party custom plug-ins
• Screenshots – programmatically, or on failure
•Video – records a video of the test suite execution
• Cross browser support:

• Chromium: Chrome, Edge and Electron
• Firefox
• WebKit: Safari (experimental)

Introducing Cypress (3/3)

Cypress Cloud (formally Dashboard) is an optional web-based
paid for service (an initial free tier is available) which provides
additional features

• Test result consolidation

• Test optimisation

• Parallelisation and load balancing to improve testing
performance

• Improved historical reporting

Cypress Cloud (Paid-For Option)

• Installation

•Scripting

•Testing UI

•Demo

How To and Demo Time!

• Installs as a regular node.js package (assume node and npm
already installed)
• Cypress recommend non-global, dev-dependency installation

e.g. npm install cypress –save-dev

• Can also be installed outside of an existing package (for ad-
hoc testing, eg API, or other systems etc.)
• Slow to install and first-time run
• Run using:

• npx cypress open
• npx cypress run <options> (headless mode)

Cypress Installation and Configuration

• cypress (root folder)
• cypress.config.js (tune cypress config)

Default Folders
• fixtures (store data objects used in testing)
• e2e

• Where we write our end to end tests
• tests - can be grouped into additional sub-folders
• samples (lots of useful examples in here!)

• plugins (store any plugins required for testing)
• support

• command.js (commonly used bespoke commands)
• Index.js (runs before every test)

Additional Output Folders
• downloads
• screenshots
• videos

Cypress Components – Folder Structure

Tests create in <<testname>>.cy.js files

Define Test Suite

 Define Test
 Commands
 Assertion

 Define Test
 Commands
 Assertion

Anatomy of a Simple Test (1/2)

Define Test Suite

 Define Test
 Commands
 Assertion

 Define Test
 Commands
 Assertion

describe(‘Test Suite', () => {

 it(‘Test1', () => {
 cy.visit(‘website')
 cy.get(‘object’)

 .should('have.length', 2)
 })
 })

Anatomy of a Simple Test (2/2)

•Borrowed from Mocha

•Test Suite
• describe() or context()
• Contain test
• Can contain child test suites

• Individual Tests
• it() or specify()

Control Tests

• Switch off Tests
– Prefix with x

• xdescribe xit

– Append . Skip
• describe.skip it.skip

• Include Only Specific Tests
– Append . only

• describe.only it.only

Test Definitions

•All built-in cypress commands begin cy.

• cy.visit() – navigate directly to a page (relative to baseUrl or
absolute)
• cy.contains – check that the page contains the required text
• cy.get – Get an element on the page and chain

assertions(Chai and/or Mocha?) to it eg .should(assertion
type(?), value)?

• See https://docs.cypress.io/api/table-of-contents

Commands

• Assertions
• Chai Assertion Library
• Validations that confirm if a test has passed or failed
• Assertions are automatically retried until they result or time out.

• Default- Many commands have a default, built-in assertion
• cy.visit() expects page to send text/html and a 200 status code
• cy.get() expects the element to exist in the DOM

• Implicit–preferred method. Add to the cy command chain
• should() cy.get(element).should('include', ‘some text’)
• and () cy.get(element).should('include', ‘some text’) and (‘style’,’some style’)

• Explicit – asserts a specified subject. Good for Unit Tests. Not chainable
• expect() eg expect(actual).to.equal(expected)
• assert() eg assert.equal(actual, expected, [message])

Assertions

• Test Runner
• Test Results
• Time Travel – Go Back In Time !
• Cypress Studio (Experimental… but Great !)– Record your

own scripts
•Headless Mode

•Demo App
https://example.cypress.io/todo

Cypress Testing UI

1. Error name - This is the type of the error (e.g. AssertionError,
CypressError).

2. Error message - This generally tells you what went wrong. It can
vary in length. Some are short like in the example, while some are
long, and may tell you exactly how to fix the error.

3. Learn more - Some error messages contain a Learn more link
that will take you to relevant Cypress documentation.

4. Code frame file - This is usually the top line of the stack trace
and it shows the file, line number, and column number that is
highlighted in the code frame below. Clicking on this link will open
the file in your preferred file opener and highlight the line and
column in editors that support it.

5. Code frame - This shows a snippet of code where the failure
occurred, with the relevant line and column highlighted.

6. View stack trace - Clicking this toggles the visibility of the stack
trace. Stack traces vary in length. Clicking on a blue file path will
open the file in your preferred file opener.

7. Print to console button - Click this to print the full error to your
DevTools console. This will usually allow you to click on lines in the
stack trace and open files in your DevTools.

Cypress Components – Understand Failures

•Experimental Feature – visible in project settings

•Add the following to cypress.config.js

e2e: {

 experimentalStudio: true

 },

Cypress Studio

•Found in ./support/commands.js

•Build custom commands

•Used to group together a set of cy statements for
example part of an it block

• simply replace the lines in the it block using
cy.customCommandName()

•Very useful for command function such as login/logout

•Good examples in sample file

Cypress Custom Commands

•Quickly run finished test scripts

•Creates a mp4 of the test in /videos

•Failed tests - screenshot in /screenshots

•Run a single spec file or all tests

•Uses Electron unless browser is specified

•npx cypress run --browser <<browser>> --spec
“specfile.js"

Headless Test

•We have occasionally observed click failures when using
the regular .click() approach

•Alternative clicking method are available if required

XPages Hints and Tips #1 - Clicking

• Due to their naming convention, selecting elements in XPages can
often be problematic

• Even though they are technically valid from a browser perspective,
selectors containing colons (:) need to be “double-escaped”
(prefixed with \\) otherwise the element will not be found when
the test executes

• This impacts elements added either manually (based on Dev Tools
inspection), or via the Selector Playground

• Strangely, Cypress Studio seems to work correctly

XPages Hints and Tips #2 - Selectors (1/2)

•Dev Tools =>

• Cypress Selector Playground =>

• Double-escape : with \\ (or use Cypress Studio) => ☺

XPages Hints and Tips #2 - Selectors (2/2)

• Because selectors in XPages automatically generated, they can
unexpectedly change, resulting in a failed test

• Mitigate by adding dedicated (and unique) data-cy tags, or aliases,
to your markup, which then allows direct selector targeting

• data-cy tags can easily be added using Domino Designer via either
the Design or the Source tab on the relevant page

• Selector Playground and Cypress Studio will then pick the data-cy
tag in preference to any other possible option

XPages Hints and Tips #3 - data-cy Tag (1/2)

•Dev Tools before adding data-cy tag (Double-escaped ☺)

• Add data-cy tag attribute in Domino Designer

• Dev Tools now shows data-cy tag

XPages Hints and Tips #3 - data-cy Tag (2/2)

•Take care to not inadvertently leave authentication
credentials (or other personal data) in test scripts or
related files
•When creating a new test, always start with an initial

failing test - the test tests the code, and the code tests
the test!
•Begin with simple, generic tests (basic page navigation

etc.) to build experience, then add new more complex
tests as your test script skills develop (new features, bug
fixes etc.)

Best Practices (1/2)

•Use a dedicated element selector tag (such as “data-cy”
for Cypress) as an alias, to uniquely identify and
therefore directly target elements for E2E testing

•Be mindful when testing date specific functions which
might result in flaky tests (for example, before, on or
after a specific date)

•As a developer, only write tests for your own code

Best Practices (2/2)

•Multi-tab (browser) based applications/external links

• iFrames (selecting or accessing elements within it)*

*Was flagged as ‘Planned’ on the Cypress Roadmap

Cypress Weaknesses

•Automated testing can be beneficial to shipping quality
applications
•Awareness of general testing types and testing terminology
•Demonstrated how to begin implementing simple E2E tests

using Cypress
•Automated testing can be a steep learning curve, but the

technical and non-technical business benefits of improved
productivity and business reputation etc., should far
outweigh the implementation cost and effort many times
over
• You No Longer Need To Let Users Test Your Code!

Summary

Testing Matters - Don’t Let Users

Test Your Code!

Do you have any questions for us?

Thank You for Listening!

• Cypress
• https://www.cypress.io/

• Cypress API and Commands
• https://docs.cypress.io/api/table-of-contents

• Cypress Plugins
• https://docs.cypress.io/plugins/directory

• Cypress Cloud (paid for option)
• https://www.cypress.io/cloud/

• Useful Cypress Blog articles:
• When Can The Test Click? =>

https://www.cypress.io/blog/2019/01/22/when-can-the-test-click/
• When Can The Test Start? =>

https://www.cypress.io/blog/2018/02/05/when-can-the-test-start/

Resources

https://www.cypress.io/
https://docs.cypress.io/api/table-of-contents
https://docs.cypress.io/plugins/directory
https://www.cypress.io/cloud/
https://www.cypress.io/blog/2019/01/22/when-can-the-test-click/
https://www.cypress.io/blog/2018/02/05/when-can-the-test-start/

	Slide 1
	Slide 2: About Paul Harrison
	Slide 3: About Martin Davies
	Slide 4: Agenda
	Slide 5: Introduction - Testing Challenges
	Slide 6: Introduction - Automated Testing
	Slide 7: Testing Approaches
	Slide 8: Testing Methodologies
	Slide 9: Other Testing Considerations
	Slide 10: Why Focus on End-to-End Testing?
	Slide 11: Introducing Cypress (1/3)
	Slide 12: Introducing Cypress (2/3)
	Slide 13: Introducing Cypress (3/3)
	Slide 14: Cypress Cloud (Paid-For Option)
	Slide 16: How To and Demo Time!
	Slide 17: Cypress Installation and Configuration
	Slide 18: Cypress Components – Folder Structure
	Slide 19: Anatomy of a Simple Test (1/2)
	Slide 20: Anatomy of a Simple Test (2/2)
	Slide 21: Test Definitions
	Slide 22: Commands
	Slide 23: Assertions
	Slide 24: Cypress Testing UI
	Slide 25: Cypress Components – Understand Failures
	Slide 26: Cypress Studio
	Slide 27: Cypress Custom Commands
	Slide 28: Headless Test
	Slide 30: XPages Hints and Tips #1 - Clicking
	Slide 34: XPages Hints and Tips #2 - Selectors (1/2)
	Slide 35: XPages Hints and Tips #2 - Selectors (2/2)
	Slide 39: XPages Hints and Tips #3 - data-cy Tag (1/2)
	Slide 40: XPages Hints and Tips #3 - data-cy Tag (2/2)
	Slide 44: Best Practices (1/2)
	Slide 45: Best Practices (2/2)
	Slide 46: Cypress Weaknesses
	Slide 47: Summary
	Slide 48: Thank You for Listening!
	Slide 49: Resources

