
DEVELOPING APPLICATIONS WITH
XPAGES JAKARTA EE

JESSE GALLAGHER
CTO - I KNOW SOME GUYS
IP MANAGER - OPENNTF
HTTPS://FROSTILLIC.US
@JESSE@PUB.FROSTILLIC.US

https://frostillic.us

Agenda

What are Jakarta EE and MicroProfile?

What is the XPages Jakarta EE Support project?

Shared Components:

Expression Language

Managed Beans (CDI)

Data access (Jakarta NoSQL)

UI Development Modes

Prerequisites
Comfort with (or willingness to learn) Java

Familiarity with annotations and Java 8 constructs (Optional, etc.) a plus

Ability to install plugins into Designer and Domino

YOU DO NOT NEED:

Knowledge of OSGi

To start a new app from scratch

JAKARTA EE AND MICROPROFILE

What is Jakarta EE?
The current form of Java EE

Originally run by Sun, then Oracle, and now
the Eclipse Foundation

Now fully open-source

Releases 8 and 9 focused on open-
sourcing and moving to jakarta.*

Jakarta EE 10 made new spec changes
and moved to Java 11 - we'll get that when
Domino 14 is out

https://jakarta.ee

https://jakarta.ee

What is MicroProfile?

Eclipse project started during JEE's
stagnation

Now serves as a sort of focused
incubator

Targeted for microservice architectures,
but most tools are useful generally

https://microprofile.io/

https://microprofile.io/

The Standards And This Project
Jakarta EE and MicroProfile are normally deployed in a server like GlassFish or
Liberty as .war or .ear files

They're not needed here: Domino is our server and NSFs are our packages

This project implements a large subset of both, but not all of either

Some specs - like Authentication - are largely inapplicable on Domino

Some - like EJB - are on the way out

Some - like WebSocket - face technical limitations

Some I just haven't gotten around to yet

Note on Naming
With the move from Java EE to Jakarta EE, many specs changed their names, like:

JSP -> Jakarta Pages

JSF -> Jakarta Faces

JAX-RS -> Jakarta REST

JPA -> Jakarta Persistence

I'll likely (and do in this slide deck) use the names interchangeably, out of habit

In the short term, it's often useful to search by the old names when looking for
documentation and Stack Overflow answers, but that is shifting over time

XPAGES JAKARTA EE SUPPORT

XPages Jakarta EE Support
Began as adding a few utility specs: CDI for managed beans and JAX-RS
for REST

Grown to encompass a ton of specs, such as JSON-B, JSP, and Jakarta
NoSQL

It further expanded to include a selection of MicroProfile specs useful for
Domino

Primarily focuses on in-NSF development in Designer

Has some support for OSGi-based apps, but that takes extra knowledge

Usage

Download from OpenNTF

Install the plugins in Designer and the
server

Enable the libraries in the "Xsp
Properties" editor

There's a ton - this will likely be
simplified in 3.x

Get to coding! (in Java, mostly)

Examples
The project has been gradually accumulating examples

The "examples" directory in the repository and distribution ZIP
contains ODPs for them

For this presentation, I created a series of To-Do apps - more on that
later

The eclipse/nsfs directory contains "example" NSFs that serve as
part of the integration-test suite. They're not useful as apps, but show
a lot of capabilities in a technical way

SHARED COMPONENTS

Shared Components
Regardless of your UI toolkit of choice, some components will be
shared:

CDI for sure - "managed beans" but much better

Expression Language - a newer version than XPages ships with

REST - even in XPages or JSF apps, REST services come in handy

JSON-P and JSON-B - read/write JSON and convert objects

MicroProfile components - the Rest Client is a big one

EXPRESSION LANGUAGE

Expression Language
Our old friend!

The current spec grew out of what started in JSF (as in XPages)

Existing EL expressions will still work in XPages, including SSJS

This EL interpreter is stricter about nulls, which is actually useful

No configuration necessary: enable the library and it will take over in
XPages

EL also shows up in JSP, JSF, and other places (like more-esoteric CDI)

What you get
All the same stuff as before!

#{foo.bar}, #{foo[bar]}, etc.

Function calls

${el:messages.format('helloMessage', session.effectiveUserName)}

The "el:" prefix avoids an error marker in Designer - this is not needed in JSP or
JSF

String concatenation

${'hi ' += session.effectiveUserName += '; good to see you!'}

Examples

<xp:text value="#{managedBeanGuy.message}"/>

<xp:text value="#{el:functionClass.doFoo('I am from XPages')}"/>

<xp:dataTable id="issueList" value="#{el:issuesBean.get(viewScope.owner, viewScope.repo)}" var="issue">
 <!-- snip -->
</xp:dataTable>

Resources

https://jakarta.ee/specifications/expression-language/4.0/

https://www.baeldung.com/jsf-expression-language-el-3

https://jakarta.ee/specifications/expression-language/4.0/
https://www.baeldung.com/jsf-expression-language-el-3

CDI (MANAGED BEANS)

CDI (Managed Beans)
The spec covering managed beans is CDI: Components & Dependency
Injection

You don't have to care about why it's called that

You also don't have to care about EJB (don't ask if you don't know)

Uses annotations instead of XML configuration (for our needs)

Cooperates with EL and general XPages variable resolution

You can (and should) replace beans in faces-config.xml entirely

Example Bean
@ApplicationScoped
@Named("markdown")
public class MarkdownBean {
 private Parser markdown = Parser.builder().build();
 private HtmlRenderer markdownHtml = HtmlRenderer.builder()
 .build();

 public String toHtml(final String text) {
 Node parsed = markdown.parse(text);
 return markdownHtml.render(parsed);
 }
}

Example Bean - Injection
@RequestScoped
@Named("encoder")
public class EncoderBean {

 @Inject @Named("dominoSession")
 private Session session;

 public String abbreviateName(String name) throws NotesException {
 Name dominoName = session.createName(name);
 try {
 return dominoName.getAbbreviated();
 } finally {
 dominoName.recycle();
 }
 }
}

Example Bean - Events and Scopes
@RequestScoped
@Named("requestGuy")
public class RequestGuy {
 @Inject
 private ApplicationGuy applicationGuy;
 private final long time = System.currentTimeMillis();

 public String getMessage() {
 return "I'm request guy at " + time + ", using applicationGuy: " + applicationGuy.getMessage();
 }

 @PostConstruct
 public void postConstruct() { System.out.println("Created requestGuy!"); }

 @PreDestroy
 public void preDestroy() { System.out.println("Destroying requestGuy!"); }
}

CDI Beyond Beans
Managed beans are the "basic" case for CDI and most of what we'll use

It goes beyond that, providing foundational layers for other techs:

Jakarta REST

MVC

Jakarta NoSQL

Pretty much all of MicroProfile

Things get... weird when you dive in, but normal apps don't need that

Resources

https://jakarta.ee/specifications/cdi/3.0/

https://www.baeldung.com/java-ee-cdi

https://openliberty.io/guides/cdi-intro.html

https://jakarta.ee/specifications/cdi/3.0/
https://www.baeldung.com/java-ee-cdi
https://openliberty.io/guides/cdi-intro.html

JAKARTA NOSQL

Jakarta NoSQL

Data access layer similar to JPA for SQL databases

Maps between Domino data and normal Java objects reasonably
efficiently

Some Caveats

The version of Jakarta NoSQL included in this project is specifically a
beta version

Newer versions have had several major changes:

They require Java versions higher than 8

The “Repository” concept moved to a new spec: Jakarta Data

The plan is to move to a version of these when Domino 14 is out

Model Objects
@Entity("To-Do") // Form name
public class ToDo {
 // Enums are stored as strings
 public enum State {
 Incomplete, Complete
 }

 @Id // Maps to UNID
 private String documentId;
 @Column("Title") // Field names
 private String title;
 @Column("Created")
 private OffsetDateTime created;
 @Column("Status")
 private State status;

 /* snip: getters/setters */
}

Models are “plain” Java objects
(POJOs)

The driver handles mapping between
NSF documents and these objects

There’s usually a one-to-one mapping
between a form and a model object

Repositories

public interface ToDoRepository extends
 DominoRepository<ToDo, String> {

 Stream<ToDo> findAll(Sorts sorts);

 Stream<ToDo> findByStatus(State status,
Sorts sorts);

}

Repositories are just interfaces - you
don’t provide the implementation

The NoSQL layer parses method
names and arguments to translate
methods to queries

The driver uses DQL and QRP
internally to make this efficient

Views and other Domino-specific
behaviors (e.g. compute-with-form) are
available

Usage
@ApplicationScoped
@Named("ToDos") // Access by name in XPages
public class ToDosBean {
 @Inject
 private ToDoRepository repository;

 public List<ToDo> getAll() {
 return repository.findAll(
 Sorts.sorts().asc("created")
).collect(Collectors.toList());
 }

 public ToDo saveToDo(ToDo todo) {
 return repository.save(todo);
 }
}

Use CDI to inject a repository

Can be injected into CDI beans and
REST resources

With XPages, you'll likely use a
"broker" bean between XPages-type
code and Jakarta-type

Can also be resolved
programmatically, but not prettily

THE UI PATHS

Example Apps: To-Do
I made four versions of a bare-bones To-Do application:

XPages

REST with a basic HTML/JS UI

MVC with Jakarta Pages

Jakarta Faces

Available at https://github.com/OpenNTF/org.openntf.xsp.jakartaee/tree/develop/examples/todo

Will be included in future distribution builds

I'll also add a README when I get a chance

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/tree/develop/examples/todo

Example Apps: To-Do
Each uses Jakarta NoSQL for its data access

Single "To-Do" form with a few properties

Repository using DQL to load documents

Just basic functionality: CRUD with "Complete" and "Incomplete"
states

Don't take these as examples of fully-built apps, but rather just
starting points

Preliminaries

Though these are four apps, the mechanisms can be interwoven

For example, you can add REST services to an XPages app, or do
an "admin" UI in MVC in an app that's otherwise just REST

Even XPages and Faces can mix, if you're careful

These don't cover all the shared capabilities you'd likely use, such as
the Rest Client and

"XPAGES PLUS"

"XPages Plus"
In this case, XPages remains your UI toolkit of choice

Pros:

Retains the benefits of existing XSP markup, plus the tooling provided by
Designer

EL and CDI bring direct improvements to the XPages experience

Can still mix with other types

Cons:

XPages itself remains the same, and remains non-portable

Structure

The structure here will be very similar
to normal old XPages apps

"Normal", at least, if you write a lot of
Java

The "ToDosBean" here is a CDI bean
that injects the Jakarta NoSQL
repository

This is because XPages isn't "CDI
native" the way some others are

Development Experience
Pretty much the same as you're used to when it comes to the UI

The main change in XSP markup is that you can use newer EL syntax

Business logic will be very heavily on the Java side

If you're not already doing this, it'll be a big change

If you are doing this, you can expect big improvements in convenience and
capability

Can also still use existing XPages constructs not available elsewhere, like
xp:dominoDocument and xp:dominoView

REST SERVICES

REST Services
In this case, you focus primarily on writing REST services to be consumed by something else

The "something else" would likely be a JavaScript app written in React or other toolkit

Pros:

Jakarta REST (JAX-RS) provides very clean, declarative annotations for writing REST services

You get an OpenAPI spec "for free"

Scales very well for larger/split teams with front-end and back-end separation

Cons:

A split app design like this is more complicated than a full-server-side toolkit

It introduces security/data-leakage concerns when you design your API

Structure
Here, there are no XPages, but there are still
Java classes

ToDosResource defines the REST endpoints
and needs no "broker" to access NoSQL

Page UI files are in File Resources

These would likely be the build output
from React/etc. in WebContent in a larger
project

Could also potentially be a wholly-
separate app

Development Experience

Will depend heavily on how you're writing the UI (or if you are at all)

UI aside, all work will happen in Java, via model objects, beans, and
REST services

Designer will help with the Java syntax and source availability, but
has no special knowledge of REST endpoints or CDI beans like e.g.
IntelliJ does

MVC AND JAKARTA PAGES (JSP)

MVC and Jakarta Pages
In this case, you use the MVC spec on top of REST services and write your UI in Jakarta Pages (JSP)

This is very well-suited to certain app types, such as document repositories, discussions, and blogs

Pros:

Builds on the clean foundation of Jakarta REST

Pairs very well with a REST-based API for non-browser clients

"Back to basics" focus on HTML and HTTP

Cons:

No server-side state makes complex forms difficult

Designer considers JSP pages HTML, so provides no help for JSP tags

Structure

Looks similar to the REST version

Here, "controller" refers to the MVC
@Controller annotation

They are special kinds of REST
resources

Again, pages are in File Resources, but
would likely be in WebContent in larger
projects

Development Experience

Writing JSP in Designer is okay - it knows about HTML well enough,
but will not help with JSP tags

JSP is small enough that you'll likely quickly memorize the basics

The Java side will be very similar to writing "normal" REST services

JAKARTA FACES (JSF)

Jakarta Faces
In this case, you write Jakarta Faces (JSF) pages and access them similar to XPages

Pros:

Very similar to XPages: individual pages with server-side state and a shared heritage

Very good for complex forms and other fiddly work

Faces is being actively developed

Can also use actively-developed third-party libraries like PrimeFaces

Lots of existing examples

Cons:

Like JSP, Designer considers JSF pages HTML, so provides no help for JSF tags

Third-party libraries can require manual fiddling to avoid conflicts with the XPages runtime

Structure

Same general idea as the XPages
version

Here, "controller" refers to a bean used
to act like a controller as in XPages, not
an official concept

Like in XPages, Faces has an implicit
controller you don't write

Faces files generally use ".xhtml", but
can also use ".jsf"

PROJECT INFORMATION

Project Information

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/

https://www.openntf.org/main.nsf/project.xsp?r=project/
XPages%20Jakarta%20EE%20Support

YouTube series: https://www.youtube.com/playlist?list=PLaDSIoof-
i96Nhho68wFsacBwwkCAmmVh

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/
https://www.openntf.org/main.nsf/project.xsp?r=project/XPages%20Jakarta%20EE%20Support
https://www.openntf.org/main.nsf/project.xsp?r=project/XPages%20Jakarta%20EE%20Support
https://www.youtube.com/playlist?list=PLaDSIoof-i96Nhho68wFsacBwwkCAmmVh
https://www.youtube.com/playlist?list=PLaDSIoof-i96Nhho68wFsacBwwkCAmmVh

Requirements and Compatibility

Domino 9.0.1FP10 for most pieces, Domino 12.0.1+ with FPs for
NoSQL

Should work with most or all existing libraries

Used in production alongside ODA and POI4XPages

Can be used in OSGi bundles with some knowledge

Getting Involved
Try it out!

Talk about it in the OpenNTF Discord: https://openntf.org/discord

Report bugs and request features

Documentation: guides, specific feature details, etc.

Example applications

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/issues/307

Chip in on the code directly

https://openntf.org/discord
https://github.com/OpenNTF/org.openntf.xsp.jakartaee/issues/307

THANK YOU
+ QUESTIONS

