
OPENNTF WEBINARS
August, 2022 OpenNTF Webinar

XPages Jakarta EE Support In Practice

AGENDA

• Welcome

• Presentation – Jesse Gallagher

• Q and A - All

THANKS TO THE OPENNTF SPONSORS

• HCL made a contribution to help our organization

• Funds these webinars!

• Contests like Hackathons

• Running the organization

• Prominic donates all IT related services

• Cloud Hosting for OpenNTF

• Infrastructure management for HCL Domino and Atlassian
Servers

• System Administration for day-to-day operation

THIS IS OUR COMMUNITY

• Join us and get involved!

• We are all volunteers

• No effort is too small

• If your idea is bigger than you can do on your own, we
can connect you to a team to work on it

• Test or help or modify an existing project

• Write guides or documentation

• Add reviews on projects / stars on Snippets

NEXT WEBINAR

• Watch https://www.openntf.org/webinars for more
information

https://www.openntf.org/webinars

ASKING QUESTIONS
• First Question – Will this be recorded?

• Yes, view on YouTube!!!

• https://www.youtube.com/user/OpenNTF

• Use the Questions Pane in GoToWebinar

• We will get to your questions at the end of
the webinar

• The speakers will respond to your questions
verbally
• (not in the Questions pane)

• Please keep all questions related to the
topics that our speakers are discussing!!!

• Unrelated Question => post at:
• https://openntf.org/discord

https://www.youtube.com/user/OpenNTF
https://openntf.org/discord

XPAGES JAKARTA EE
SUPPORT IN PRACTICE

Jesse Gallagher

XPAGES JAKARTA EE
IN PRACTICE

JESSE
GALLAGHER

CTO - I KNOW SOME GUYS

IP MANAGER - OPENNTF

HTTPS://FROSTILLIC.US

@GIDGERBY

https://frostillic.us

AGENDA

• What are Jakarta EE and MicroProfile?

• What is the XPages Jakarta EE Support project?

• Components:

• Expression Language

• Managed Beans (CDI)

• Data access

• Producing REST Services

• Consuming REST Services

• User Interface Options

PREREQUISITES

• Comfort with (or willingness to learn) Java

• Familiarity with annotations and Java 8 constructs (Optional, etc.) a plus

• Ability to install plugins into Designer and Domino

YOU DO NOT NEED:

• Knowledge of OSGi

• To start a new app from scratch

JAKARTA EE AND
MICROPROFILE

WHAT IS JAKARTA EE?

• The current form of Java EE

• Originally run by Sun, then Oracle,
and now the Eclipse Foundation

• Now fully open-source

• Releases 8 and 9 focused on open-
sourcing and moving to jakarta.*

• Jakarta EE 10, releasing this month,
makes new spec changes and moves
to Java 11

• https://jakarta.ee

https://jakarta.ee

WHAT IS MICROPROFILE?

• Eclipse project started during JEE's
stagnation

• Now serves as a sort of focused
incubator

• Targeted for microservice
architectures, but most tools are
useful generally

• https://microprofile.io/

https://microprofile.io/

THE STANDARDS AND THIS PROJECT

• Jakarta EE and MicroProfile are normally deployed in a server like GlassFish or Liberty
as .war or .ear files

• They're not needed here: Domino is our server and NSFs are our packages

• This project implements a large subset of both, but not all of either

• Some specs - like Authentication - are largely inapplicable on Domino

• Some - like EJB - are on the way out

• Some - like WebSocket - face technical limitations

• Some I just haven't gotten around to yet

XPAGES JAKARTA EE
SUPPORT

XPAGES JAKARTA EE SUPPORT

• Began as adding a few utility specs: CDI for managed beans and JAX-RS for REST

• Grown to encompass a ton of specs, such as JSON-B, JSP, and Jakarta NoSQL

• It further expanded to include a selection of MicroProfile specs useful for Domino

• Primarily focuses on in-NSF development in Designer

• Has some support for OSGi-based apps, but that takes extra knowledge

USAGE

• Download from OpenNTF

• Install the plugins in Designer and
the server

• Enable the libraries in the "Xsp
Properties" editor

• There's a ton - this will likely be
simplified in 3.x

• Get to coding! (in Java, mostly)

EXAMPLES

• Almost all code in this presentation is from the in-development OpenNTF home DB

• It's not publicly available yet, but I'll aim to make it so

• The XPages JEE project contains a DB in eclipse/nsfs/nsf-example, though it's a bit
packed

• (It doubles as the DB for the integration-test suite)

• Fortunately, most examples online of each spec should work - JAX-RS here is the
same JAX-RS as on Stack Overflow

EXPRESSION
LANGUAGE

EXPRESSION LANGUAGE

• Our old friend!

• The current spec grew out of what started in JSF (as in XPages)

• Existing EL expressions will still work, including SSJS

• This EL interpreter is stricter about nulls, which is actually useful

• No configuration necessary: enable the library and it will take over

WHAT YOU GET

• All the same stuff as before!

• #{foo.bar}, #{foo[bar]}, etc.

• Function calls

• ${el:messages.format('helloMessage', session.effectiveUserName)}

• The "el:" prefix avoids an error marker in Designer

• String concatenation

• ${'hi ' += session.effectiveUserName += '; good to see you!'}

EXAMPLES

<xp:text value="#{managedBeanGuy.message}"/>

<xp:text value="#{el:functionClass.doFoo('I am from XPages')}"/>

<xp:dataTable id="issueList" value="#{el:issuesBean.get(viewScope.owner, viewScope.repo)}" var="issue">

	 <!-- snip -->

</xp:dataTable>

RESOURCES

• https://jakarta.ee/specifications/expression-language/4.0/

• https://www.baeldung.com/jsf-expression-language-el-3

https://jakarta.ee/specifications/expression-language/4.0/
https://www.baeldung.com/jsf-expression-language-el-3

MANAGED BEANS

MANAGED BEANS

• The spec covering managed beans is CDI: Components & Dependency Injection

• You don't have to care about why it's called that

• You also don't have to care about EJB (don't ask if you don't know)

• Uses annotations instead of XML configuration (for our needs)

• Cooperates with EL and general XPages variable resolution

• You can (and should) replace beans in faces-config.xml entirely

EXAMPLE BEAN

@ApplicationScoped

@Named("markdown")

public class MarkdownBean {

	 private Parser markdown = Parser.builder().build();

	 private HtmlRenderer markdownHtml = HtmlRenderer.builder()

	 	 	 .build();

	 public String toHtml(final String text) {

	 	 Node parsed = markdown.parse(text);

	 	 return markdownHtml.render(parsed);

	 }

}

EXAMPLE BEAN - INJECTION

@RequestScoped

@Named("encoder")

public class EncoderBean {

	

	 @Inject @Named("dominoSession")

	 private Session session;

	

	 public String abbreviateName(String name) throws NotesException {

	 	 Name dominoName = session.createName(name);

	 	 try {

	 	 	 return dominoName.getAbbreviated();

	 	 } finally {

	 	 	 dominoName.recycle();

	 	 }

	 }

}

EXAMPLE BEAN - EVENTS AND SCOPES

@RequestScoped

@Named("requestGuy")

public class RequestGuy {

	 @Inject

	 private ApplicationGuy applicationGuy;

	 private final long time = System.currentTimeMillis();

	 public String getMessage() {

	 	 return "I'm request guy at " + time + ", using applicationGuy: " + applicationGuy.getMessage();

	 }

	

	 @PostConstruct

	 public void postConstruct() { System.out.println("Created requestGuy!"); }

	 @PreDestroy

	 public void preDestroy() { System.out.println("Destroying requestGuy!"); }

}

CDI BEYOND BEANS

• Managed beans are the "basic" case for CDI and most of what we'll use

• It goes beyond that, providing foundational layers for other techs:

• JAX-RS

• MVC

• Jakarta NoSQL

• Pretty much all of MicroProfile

• Things get... weird when you dive in, but normal apps don't need that

RESOURCES

• https://jakarta.ee/specifications/cdi/3.0/

• https://www.baeldung.com/java-ee-cdi

• https://openliberty.io/guides/cdi-intro.html

https://jakarta.ee/specifications/cdi/3.0/
https://www.baeldung.com/java-ee-cdi
https://openliberty.io/guides/cdi-intro.html

JAX-RS (REST)

JAX-RS

• JAX-RS, officially "Jakarta RESTful Web Services" or "Jakarta REST", is a long-
standing framework for REST services

• Primarily serves JSON, but can work with anything

• Domino ships with an ancient implementation - Wink - that powers DAS in the
ExtLib

• JAX-RS focuses on using annotations and implicit conversion to keep code clean
and meaningful

JAX-RS EXAMPLE

@Path("/config")

public class ApplicationConfigResource {

	

	 // CDI managed bean

	 @Inject

	 ApplicationConfig config;

	 @GET

	 @Produces(MediaType.APPLICATION_JSON)

	 public ApplicationConfig get() {

	 	 // The @Produces above causes automatic

	 	 // JSON conversion

	 	 return config;

	 }

}

curl http://server.com/foo.nsf/xsp/app/config | jq

JAX-RS EXAMPLE - POSTING FORMS

// Takes a standard HTML form format and returns JSON

// URL like "/foo.nsf/xsp/app/people/create"

@Path("create")

@POST

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

@Produces(MediaType.APPLICATION_JSON)

public Person createPerson(

	 	 @FormParam("firstName") @NotEmpty String firstName,

	 	 @FormParam("lastName") String lastName

) {

	 Person person = new Person();

	 person.setFirstName(firstName);

	 person.setLastName(lastName);

	

	 return personRepository.save(person);

}

JAX-RS EXAMPLE - POSTING JSON

// Consumes and returns JSON, validating the object on input

// URL like "/foo.nsf/xsp/app/people/some-person-id"

@Path("{id}")

@PUT

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public Person createJson(@PathParam("id") String id, @Valid Person person) {

	 person.setUnid(id);

	 return personRepository.save(person, true);

}

RESOURCES

• https://jakarta.ee/specifications/restful-ws/3.0/

• https://www.baeldung.com/eclipse-microprofile

• https://openliberty.io/guides/rest-intro.html

https://jakarta.ee/specifications/restful-ws/3.0/
https://www.baeldung.com/eclipse-microprofile
https://openliberty.io/guides/rest-intro.html

MICROPROFILE

REST CLIENT

MICROPROFILE REST CLIENT

• Uses JAX-RS annotations to make it easy to access remote services

• Pairs with JSON-B to translate between remote JSON and local Java classes

• Tools like https://openapi-generator.tech/ can generate bindings for it automatically

• (These may need translation from javax.* to jakarta.*)

https://openapi-generator.tech/

MICROPROFILE REST CLIENT
restclient/GitHubIssues.java bean/IssuesBean.java

gitHubIssues.xsp

<xp:inputText value="#{viewScope.owner}" defaultValue="OpenNTF"/>

<xp:inputText value="#{viewScope.repo}" defaultValue="org.openntf.xsp.jakartaee"/>

<!-- snip -->

<xp:dataTable id="issueList" value="#{el:issuesBean.get(viewScope.owner, viewScope.repo)}" var="issue">

	 <!-- snip -->

</xp:dataTable>

@ApplicationScoped

@Named

public class IssuesBean {

	

	 @Inject

	 private GitHubIssues client;

	

	 public List<GitHubIssues.Issue> get(String owner, String repo) {

	 	 if(StringUtil.isEmpty(owner) || StringUtil.isEmpty(repo)) {

	 	 	 return Collections.emptyList();

	 	 }

	 	 return client.get(owner, repo);

	 }

}

@RegisterRestClient(baseUri="https://api.github.com")

@Path("repos/{owner}/{repo}/issues")

public interface GitHubIssues {

	 @GET

	 @Produces(MediaType.APPLICATION_JSON)

	 List<Issue> get(

	 	 @PathParam("owner") String owner,

	 	 @PathParam("repo") String repo

);

	 class Issue {

	 	 private int id;

	 	 private String url;

	 	 private String title;

	 	 private String state;

	 	 @JsonbProperty("created_at")

	 	 private Date created;

	 	 // Getters and setters

	 }

}

RESOURCES

• https://github.com/eclipse/microprofile-rest-client/releases/tag/3.0

• https://openliberty.io/guides/microprofile-rest-client.html

https://github.com/eclipse/microprofile-rest-client/releases/tag/3.0
https://openliberty.io/guides/microprofile-rest-client.html

JAKARTA NOSQL

JAKARTA NOSQL

• Jakarta NoSQL is a beta specification not yet officially included in JEE releases

• It's meant to be similar to JPA, but suited to various kinds of NoSQL databases

• Thanks to DQL, Domino is now a practical data source for it

• Provides standard behavior for databases, but encourages per-DB customization

• The Domino driver is extended with support for item flags, views, etc.

• https://jakarta.ee/specifications/nosql/1.0/

• https://www.baeldung.com/eclipse-jnosql

https://jakarta.ee/specifications/nosql/1.0/
https://www.baeldung.com/eclipse-jnosql

ENTITY OBJECTS

@Entity("Project") // Maps to Form value

public class Project {

	 @RepositoryProvider("projectsRepository") // Pull from a different NSF

	 public interface Repository extends DominoRepository<Project, String> {

	 	 // Auto-synthesized query based on method name

	 	 Optional<Project> findByProjectName(String projectName);

	 }

	

	 @Id

	 private String id;

	 @Column("ProjectName")

	 private String name;

	 @Column("ProjectOverview")

	 private String overview;

	 @Column("Details")

	 @ItemStorage(type=ItemStorage.Type.MIME) // Domino-specific extension

	 private String details;

	 @Column("DownloadsProject")

	 private int downloads;

	 @Column("MasterChef")

	 private List<String> chefs;

	 @Column("Entry_Date")

	 private OffsetDateTime created;

	 // Getters and setters

}

USING A REPOSITORY

	 @Inject

	 Project.Repository projectRepository;

	

	 @Path("{projectName}")

	 @GET

	 @Produces(MediaType.APPLICATION_JSON)

	 public Project getProject(@PathParam("projectName") String projectName) {

	 	 String key = projectName.replace('+', ' ');

	 	

	 	 // java.util.Optional includes .orElseThrow(...), perfect for this case.

	 	 // Throwing NotFoundException leads to a 404

	 	 Project project = projectRepository.findByProjectName(key)

	 	 	 .orElseThrow(() -> new NotFoundException("Unable to find project for name: " + key));

	 	 return project;

	 }

USING REPOSITORIES

• By default, JNoSQL repositories have a few methods for CRUD operations

• DominoRepository adds a few more, such as methods to add/remove from folders
and options to call computeWithForm on save

• The Domino driver also includes a number of extensions for reading from views

USER INTERFACE

OPTION 1: XPAGES

• XPages works as well as ever in an NSF using these libraries

• Applicable specs work here: Expression Language, CDI beans, MP REST Client, etc.

• Other than EL improvements, the act of writing XSP markup is the same, with the
same components and capabilities

• XPages can work alongside JAX-RS and the other UI technologies without issue

• JAX-RS can be a bit more pleasant than the ExtLib components

OPTION 2: REST + CLIENT JS

• You can write all of your server logic in JAX-RS

• Use React, Angular, vanilla JS, etc.

• Heck, use C if you want to

• The app could live outside of the NSF or inside as design elements

• (Try the NSF ODP Tooling project for automated-build options!)

• Inside an NSF, you can enforce access with an ACL and share the login with pages

OPTION 3: MVC + JSP

• MVC is a newer spec, not in the full release but not in beta

• It builds on top of JAX-RS

• It's an action-oriented framework, as opposed to XPages's component-based
approach

• In general, you're "closer to the metal"

• MVC can work with multiple UI techs, but JSP is in this project

controller/HomeController.java WebContent/WEB-INF/views/home.jsp

OPTION 3: MVC + JSP

// URL like /foo.nsf/xsp/app

@Path("/")

@Controller

public class HomeController {

	 @Inject Models models;

	

	 @Inject ProjectReleases releases;

	

	 @Inject BlogEntries blogEntries;

	

	 @GET

	 @Produces(MediaType.TEXT_HTML)

	 public String get() {

	 	 // Put objects you need in "models", like viewScope

	 	 models.put("recentReleases", releases.get(30));

	 	 models.put("blogEntries", blogEntries.getEntries(5));

	 	

	 	 // Return the name of the JSP file to render

	 	 return "home.jsp";

	 }

}

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<%@taglib prefix="t" tagdir="/WEB-INF/tags" %>

<%@taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<t:layout>

	 <section class="main-content">

	 	 <div class="home-layout">

	 	 	 <section id="blog">

	 	 	 	 <c:forEach items="${blogEntries}" var="entry">

	 	 	 	 	 <t:blogEntry value="${entry}"/>

	 	 	 	 </c:forEach>

	 	 	 </section>

	 	 	 <section id="recent-releases" class="activity-feed">

	 	 	 	 <h2><c:out items="${translation.recentReleases}"/></h2>

	 	 	 	

	 	 	 	

	 	 	 	 	 <c:forEach items="${recentReleases}" var="release">

	 	 	 	 	 	 <!-- snip -->

	 	 	 	 	 </c:forEach>

	 	 	 	

	 	 	 </section>

	 	 </div>

	 </section>

</t:layout>

FUTURE OPTIONS

• XPages + MVC?

• I did an early trial, but there are parts of the XPages stack that need workarounds

• Jakarta Faces (JSF)?

• JSF 3.0 is present in the project, but not PrimeFaces or Apache Tobago

• It generally works as-is, but doesn't have a lot of niceties

• Other view engines, like Thymeleaf?

• MVC has extensions for several of these, so I may bring them in

RESOURCES

• https://jakarta.ee/specifications/mvc/2.0/

• https://www.baeldung.com/java-ee-mvc-eclipse-krazo

• https://jakarta.ee/specifications/faces/3.0/

https://jakarta.ee/specifications/mvc/2.0/
https://www.baeldung.com/java-ee-mvc-eclipse-krazo
https://jakarta.ee/specifications/faces/3.0/

PROJECT
INFORMATION

PROJECT INFORMATION

• https://github.com/OpenNTF/org.openntf.xsp.jakartaee/

• https://www.openntf.org/main.nsf/project.xsp?r=project/
XPages%20Jakarta%20EE%20Support

• YouTube series: https://www.youtube.com/playlist?list=PLaDSIoof-
i96Nhho68wFsacBwwkCAmmVh

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/
https://www.openntf.org/main.nsf/project.xsp?r=project/XPages%20Jakarta%20EE%20Support
https://www.openntf.org/main.nsf/project.xsp?r=project/XPages%20Jakarta%20EE%20Support
https://www.youtube.com/playlist?list=PLaDSIoof-i96Nhho68wFsacBwwkCAmmVh
https://www.youtube.com/playlist?list=PLaDSIoof-i96Nhho68wFsacBwwkCAmmVh

REQUIREMENTS AND COMPATIBILITY

• Domino 9.0.1FP10 for most pieces, Domino 12.0.1+ with FPs for NoSQL

• Should work with most or all existing libraries

• Used in production alongside ODA and POI4XPages

• Can be used in OSGi bundles with some knowledge

GETTING INVOLVED

• Try it out!

• Report bugs and request features

• Documentation: guides, specific feature details, etc.

• Example applications

• https://github.com/OpenNTF/org.openntf.xsp.jakartaee/issues/307

• Chip in on the code directly

https://github.com/OpenNTF/org.openntf.xsp.jakartaee/issues/307

THANK YOU

+ QUESTIONS

QUESTIONS?
Use the GoToWebinar Questions Pane

Please keep all questions related to the
topics that our speakers are discussing!!!

Unrelated Question => post at:

https://openntf.org/discord

https://openntf.org/discord

