
Notes Java UI API Exerciser
License: Apache License v2
Last version: 1.5.2
Authors: Ryan J Baxter (IBM), Stanton Sievers (IBM)
Platform: Lotus Notes 8.5.2 or above

Install
 Download this plug-in and extract it to local folder, such as C:\APIExerciser. Add

the following line in <Notes>\framework\rcp\plugin_customization.ini to enable menu File
-> Applications -> Install....
com.ibm.notes.branding/enable.update.ui=true

• Start Notes and select menu File -> Applications -> Install... Then you will see the
following window. Select the second option (“Search for new features to install”) and
then click Next.

Figure 1 Select the second option to install new features

file:///C:/APIExerciser

• Click the Add Folder Location… button on the Install window, and then navigate to
the directory that contains the site.xml file (C:\APIExerciser\updatesite). Ensure that
the “Notes API Test Feature” and the “Lotus Labs Tests” features are selected. The
“Notes API Properties Test Feature” is optional.

Figure 2 Select the features you want to install

• Click Finish and accept the remaining prompts.
• Once the new features are installed, you will be asked to restart Lotus Notes.

Usage
This project exemplifies the use of the Java UI APIs for Lotus Notes. It contributes a
sidebar view that allows users to add current documents and views in order to view
information about them and to take action on them. It also contributes several stand-
alone views that allow for interaction with other functionality of the Java UI APIs, such as
launching database pickers, composing documents, running agents, and opening views
and framesets.
By examining the source code for this project's plugins, one will be able to gain insight
into how to utilize the Java UI APIs for Lotus Notes. In order to better understand the
rest of this document, one should familiarize oneself with the Java UI APIs. The 8.5.1
javadoc for the APIs can be found in the Notes help documentation, as seen in Figure 3.
The newest documentation can be found on the Lotus Notes and Domino Application
Development wiki along with other useful resources:

Figure 3 Location of the API javadoc in the Notes help
The Java UI APIs also make use of some Java classes from Notes.jar. The
documentation for these classes may be found in the Lotus Notes Help in the “Lotus
Domino Designer Basic User Guide and Reference” section under “Java/CORBA
Classes.”

http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=APIs: Notes Client Java UI
http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=APIs: Notes Client Java UI

Notes UI Elements Sidebar
The Notes UI Elements Sidebar allows users to add the current Notes document, view,
or element to the sidebar in order to view information about it or take action upon it. To
add the current NotesUIElement to the sidebar, select “Add Element” to add either the
current element – either a view or document. To add a specific NotesUIElement to the
sidebar, simply give focus to a document or view in the Notes UI and select “Add
Document” or “Add View” in the sidebar to add a document or a view, respectively.
One may also “Add Data” which adapts the current NotesUIElement to the applicable
data classes using the adapter pattern. For example, given a view this will adapt the
view to NotesViewData and NotesDatabaseData and display it in the sidebar.
Information in the sidebar is represented in two ways. First, properties of the view or
document are displayed in the format “Property: Property Value”. For instance, in
Figure 4 one can find “URL: Notes:///....” This denotes the url of the view.
Another way that information is displayed is as an action. Actions are always displayed
in the form “Action: Some action”. Actions may be double-clicked in order to execute
them. In Figure 4, double-clicking “Action: Close” will close the view using the
NotesUIView.close() method.
NotesUIElements in the sidebar may also have subtrees which themselves have
properties and actions. In Figure 4 one can see an “All Columns” subtree that can be
expanded to view each column information for the view.

Notes:///

NotesUIView
In Notes 8.5.2, new Java UI APIs were introduced to give consumers more information
about the current Notes view. In 8.5.1 the NotesUIView APIs were limited but in 8.5.2
new APIs have been added to get column information from the view as well as to get the
actionable entries in the view.

Figure 4 An example NotesUIView in the sidebar
Figure 5 exhibits more information regarding the columns of a view. Each column
represents a NotesUIViewColumn. Figure 5 shows the “Subject” column of Notes mail
file. The entire list of columns is attained from the view using the
NotesUIView.getColumns() method.

Figure 5 An example "All Columns" subtree of a NotesUIView
Figure 6 illustrates the “Actionable Entries” of the view which are obtained through the
NotesUIView.getActionableEntries() method. In the simplest case, the actionable
entries are simply the selected entries in the view; however, in some cases this is not
true and the API documentation explains these cases more thoroughly.
For each actionable entry, the column values can be obtained through the “All Columns”
view. The columns correspond to the NotesUIViewColumns from Figure 5. Figure 6
shows the column value for this entry that corresponds to the Subject column of the
view.
Through this sidebar UI one may examine all of the actionable entries, only the
actionable entries which are NotesUIDocumentEntries, or the actionable entries adapted
to specific data objects using the adapter pattern.

Figure 6 An example "Actionable Entries" subtree of a NotesUIView

NotesUIDocument
The document APIs have remained unchanged since 8.5.1. Figure 7 shows the familiar
properties and actions that may be taken on a document.

Figure 7 An example NotesUIDocument in the sidebar
Documents in the sidebar also allow the ability to view information about the
NotesBEDocument. There is simply one action for the backend document: Add Item.
This allows items from the backend to be retrieved by name and added to the sidebar
on-demand. The items are added under the “Backend Document” subtree.
Because documents contain a collection of NotesUIFields, they are also listed as a
subtree of a document. Each field entry in the sidebar displays the name of the field
and allows one to take actions upon the fields, as can be seen in Figure 8.

Top-level items in the sidebar can be refreshed or removed by right-clicking on them
and selecting the corresponding action from the context menu. Top-level items will
automatically be removed based on the functionality of their close listeners. For
example, if a view is in the sidebar and the tab in which the view resides is closed, the
view will be removed from the sidebar. Documents will be removed in the same
manner.

Figure 8 An example "All Fields" subtree of a NotesUIDocument

Lotus Labs Tests
Another aspect of this project is the Lotus Labs Tests perspective which displays
several views that offer functionality based on the API. To get to it, find the Lotus Labs
Tests entry in the “Open” menu.

Figure 9 Lotus Labs Tests in the Notes Open menu

The Lotus Labs Tests tab shows a table that lists all of the other views that can be
opened. To open one of these views, simply double-click it.

Figure 10 The Lotus Labs Tests tab

Notes Launcher
The Notes Launcher allows the user to open pages, framesets, and views in a given
database using the following API functions:
com.ibm.notes.java.ui.NotesUIWorkspace.openPage(NotesPageData)
com.ibm.notes.java.ui.NotesUIWorkspace.openFrameset(NotesFramesetData)
com.ibm.notes.java.ui.NotesUIWorkspace.openView(NotesViewData)

Figure 11 Using Notes Launcher to open the “By Category” view in names.nsf

In the past, each button in Notes Launcher attempted to open the given element in one
of two ways. The “name” suffix denoted that the element was to be opened with only the
given data (i.e. the name) while the “db” suffix denoted that it was to be opened with
more data retrieved from the database in a NotesSessionJob. Currently, they open the
element with the same data; however, “db” still opens it in a NotesSessionJob while
“name” opens it on the UI thread. In future releases, this behavior will be cleaned up to
more accurately reflect the current state of the APIs.

Notes Browser
The Notes Browser's functionality is similar to the Notes Launcher, but the
implementations are different. Notes Browser exercises these API functions:
com.ibm.notes.java.ui.NotesUIWorkspace.openDatabase(NotesDatabaseData)
com.ibm.notes.java.ui.NotesUIWorkspace.openUrl(String)

com.ibm.notes.java.ui.NotesUIWorkspace.openFrameset(NotesFramesetData)
com.ibm.notes.java.ui.NotesUIWorkspace.openFrameset(NotesFramesetData,
NotesViewData)
com.ibm.notes.java.ui.NotesUIWorkspace.openFrameset(NotesFramesetData,
String)
com.ibm.notes.java.ui.NotesUIWorkspace.openView(NotesViewData)

Figure 12 Using Notes Browser to browse names.nsf
The key difference between Notes Launcher and Notes Browser is that the Notes
Browser lists all of the views in the database, as seen in Figure 10. In this way, one can
simply select a view to open, instead of having to type a view name.
Each button in the Notes Browser attempts to open the database element in one of
three ways. The “jar” suffix indicates that the element will be opened by constructing its
corresponding data with a Notes.jar class (i.e. View or Database). The “url” suffix
indicates that the element will be opened via the openUrl(String) method mentioned
above. The “name” suffix indicates that the name of the element will be used when
constructing the corresponding data and opening the element, except in the case of
“Frame: name,” where the view name is used. “Frame: view” utilizes the openFrameset
(NotesFramesetData, NotesViewData) method mentioned above to open the frameset.

Add To Workspace
The Add To Workspace view simply exercises this API function:
com.ibm.notes.java.ui.NotesUIWorkspace.addDatabase(NotesDatabaseData)

Figure 13 Add a database to the Notes workspace using one of three options

Figure 14 Three options to choose from which to choose

If the database selected does not exist in the workspace, it will be added; otherwise, it
will be selected in the workspace. The drop-down box allows one to dictate what
information will be used when constructing the NotesDatabaseData that is passed to the
addDatabase method.

Compose Document
The Compose Document view allows documents to be composed using the following
API functions:
com.ibm.notes.java.ui.NotesUIWorkspace.composeDocument(NotesFormData)
com.ibm.notes.java.ui.NotesUIWorkspace.composeDocument
(NotesDatabaseData, Document)
com.ibm.notes.java.ui.NotesUIWorkspace.composeDocument(Document)

Figure 15 Composing a new Person document in the Contacts DB

The “Create Form” and “Create Fields” buttons compose a document using only
NotesFormData, while “Create Local Document” and “Create DB Document” compose a
document using a Document object. In the case of “Create Local Document”,
NotesDatabaseData is used as well.
The “Contact”, “Calendar”, and “Mail” buttons in the view prepopulate the form name
and fields in order to make composition more expedient; however, one can compose a
document on any number of databases with as many fields as one chooses.

Compose Mime Mail
Much like Compose Document, Compose Mime Mail composes a document; however,
in this case the document is always a mail document in the current user's mail db. Urls
can be loaded to populate the body or one can browse for an html file. By selecting
“Multipart”, one can decide whether to send the message as a multipart mime message
or as plain html.

Figure 16 Composing a mime mail message with simple HTML

Launch Agent
The Launch Agent view allows users to run arbitrary agents in a database using this API
function:
com.ibm.notes.java.ui.NotesUIWorkspace.runAgent(NotesAgentData,
NotesDocumentDataCallback, boolean)

Figure 17 Running an agent named "PickList" with sample fields

There are two options when running the agent: Run Agent On Temp and Run Agent On
UI. The difference between the two is the boolean that is passed to the runAgent
method. The former passes false, while the latter passes true.
The values in the callback area display field values in the document represented by the
NotesDocumentData that may be retrieved from the event in the
NotesDocumentDataCallback.done(NotesDocumentDataEvent) method.

Prompt
The Prompt view allows the user to display a variety of prompts using the following API
functions, as well as API functions in the com.ibm.notes.java.ui.prompt.Prompt class:
com.ibm.notes.java.ui.NotesUIWorkspace.prompt(int, String, String,
Object, String[])

Figure 18 Displaying an "OK" prompt

In this view, buttons prefixed with “PROMPT_” utilize the NotesUIWorkspace.prompt()
method mentioned above, while the others directly use API functions in the Prompt
class.

Session
The Session view queries the current user and displays it using the
Session.getUserName() function in Notes.jar. The novel part of the Session view is that
it extends NotesSessionJob as an inner class to accomplish this. It is a good example
of how one could extend NotesSessionJob to further customize its behavior.

Figure 19 Message showing the session's current user

Output
The Output view is part of the test framework and is simply used to display output from
the other views in certain scenarios.

API Properties
The Notes API Properties Test plugin demonstrates one way in which the API's property
testers can be leveraged. While the classes in the src folder of the plugin may interest
some who want to generate plugin.xml, the most interesting piece is the actual
plugin.xml file that contributes context menus based on the results of the API's property
testers. Each action in the menu will be enabled or disabled based on the property it is
testing. Full documentation for all of the property testers provided by the Java UI API
can be found on the Lotus Notes and Domino Application Development wiki in the
javadoc for the com.ibm.notes.java.ui.internal.properties package.
Figure 20 demonstrates the Document property tester. “editmode (v:false)” relates to
this expression in the plugin.xml:
<test property="com.ibm.notes.java.ui.document.editmode" value="false"/>
In this case, the document is not in edit mode, so this test returns true.

Figure 20 The document is not in edit mode but it is editable

Figure 21 gives another example, this time using selected text. In this case, the Text
property tester is being used. This property tester works on the selected text. In this
case “find (v:book)” relates to this expression in the plugin.xml:
<test property="com.ibm.notes.java.ui.text.find" value="book"/>

http://www-10.lotus.com/ldd/ddwiki.nsf/xpViewCategories.xsp?lookupName=APIs: Notes Client Java UI

Figure 21 The word "book" was found in the selected text

These are just two examples using the property testers. They can be used to control
many aspects of the Lotus Notes UI. This website provides some examples in the
context of Eclipse: http://wiki.eclipse.org/Command_Core_Expressions

http://wiki.eclipse.org/Command_Core_Expressions

	Install
	Usage
	Notes UI Elements Sidebar
	NotesUIView
	
	NotesUIDocument

	Lotus Labs Tests
	
	Notes Launcher
	Notes Browser
	Add To Workspace
	Compose Document
	Compose Mime Mail
	Launch Agent
	Prompt
	Session
	Output

	API Properties

