
JAVADDIN prototype

Version 1.5
Change Notes:
Important: delete all the previous code before reinstalling a new version of Javaddin.

Version 1.5:
• Minor bug fixes
• Dots OSGi profiles now support sites using plugins stored in an NSF database. With this

new feature, you can post your plugin in an NSF database based on the UpdateSite.ntf
template and have them loaded in dots.

• Added support for security allowing you to configure permissions for each site specified in
the OSGi Profile. This feature is using the OSGi Conditional Permission admin service
which also supports negative permissions. As an example of OSGi permission, you can
prevent plugins to have dependencies on a predetermined set of plugins.

• Remote Control support: you can configure the DOTS OSGi profile to accept remote OSGi
console commands, on a port of your choosing. For security purposes, only requests
initiated from the same machine are authorized. This is a great feature to, for example,
drive a dots tasklet from an XPage application.

• All the new features in 1.5 have been tested with version 3.6.1 of eclipse OSGi. It is
recommended to upgrade the OSGi plugins from http://www.eclipse.org/download

Version 1.4:
• Changed the javaddin executable name to dots and updated documentation accordingly
• Added support for OSGi profiles allowing multiple instances of dots to be run and

configured
• Bug fix reported on openNTF: runOnStart attribute was not always being triggered right

away.
• Changed the name of the list command as it can cause conflicts in some case (when

Declarative services plugin is installed). The new command is “ tell dots tasklist”
• Added C/C++ binaries for linux32 and linux64

Version 1.3:
• Added support for IBM Lotus Domino Debug plugin
• Better detection of hung tasklets, with automatic stack trace reporting.
• New AbstractServerTaskExt that provides easier support for keyed arguments
• New MultiTask extension point to declaratively create new tasklets by combining existing

one. This extension point also allow dynamic arguments using substitution variables.
• New ITaskFilter interface to programmatically allow a tasklet to be loaded or not.
• Can now use regular expressions to list tasklets
• Notes.ini variables to start the tasklet container in debug mode
• C/C++ binaries now also include Win64 version

Version 1.2:
• More supported Extension Manager events (see complete list in section)
• Support for NSFHooks
• OSGi console is now integrated to Javaddin (no need for external telnet)
• New extension point to support aliases
• New extension point to automatically start a plugin
• New debug command to dump thread java stacks
• Bug fixes:
• OSGi framework was not properly closed upon main task termination
• Javaddin task is not visible in task list

Version 1.1:
• Tasklets are now running on a different thread than the main java thread. This improves

responsiveness of javaddin commands while a long running tasklet is in progress

http://www.eclipse.org/download

• Tasklets now support the “triggered” attribute that let a task run based on an Extension
Manager event. This feature requires the Javaddin extension manager library to be
installed. Note: only a subset of the extension manager events are currently supported in
javaddin 1.1. Based on feedback, I will add support for more events as appropriate.

• Tasklets progress can now be monitored and/or canceled. An IProgressMonitor object has
been added to the run method signature. Tasklets implementations can provide progress
monitoring via the IProgressMonitor argument, they can also be notified if a task has been
canceled.

• New javaddin arguments:
• tell javaddin status: give the status of the current tasks
• tell javaddin cancel: cancel all the current tasks

Introduction
This document provides information about the Javaddin prototype and its overall architecture

including how to install it and run the samples. It also provides information about the source code
for each of its components.

Note: it is assumed that you have unzipped the javaddin_prototype.zip in a directory of your
choice. This zip file contains the following subdirectories: sources, build.

Javaddin is an experimental generic domino addin task that lets users create Domino server
tasks using Java OSGi plugins by creating a tasklet container. A tasklet is a lightweight server
adding task written in Java and declared as an OSGi extension point.

There are many benefits in using a java framework like OSGi to write Domino Server tasks:
• Declarative task scheduling
• Built-in mechanism to access server task user arguments.
• List of tell commands to query the OSGi framework.
• Multi-platform support
• Extensibility
• Easy deployment
• Better tooling with Eclipse IDE and its first class Java and plugins editors and Java

debugger.
• ...

OSGi itself is a java based framework for running unit of code called bundles. It is usually
associated with Eclipse, so a lot people might be surprised that it is used as a server technology.
However at its core, OSGi is only a thin runtime that governs how bundles are loaded/stopped
(lifecycle), their dependencies, how their services are exposed, etc... You can find more
information about OSGi at http://www.osgi.org/Main/HomePage.

Overall architecture
As explained in the diagram below, the javaddin generic server task launches a JVM and

invokes code located in launcher.jar to launch the OSGi container.
The OSGi framework located in {dominobin}/javaddin/rcp/eclipse contains the core plugins to

run a OSGi framework. The minimum set is comprised of the following list:
1. org.eclipse.update.configurator
2. org.eclipse.osgi
3. org.eclipse.equinox.preferences
4. org.eclipse.equinox.registry
5. org.eclipse.equinox.app
6. org.eclipse.equinox.common
7. org.eclipse.core.runtime.compatibility.auth
8. org.eclipse.core.jobs
9. org.eclipse.core.runtime
10.org.eclipse.core.contenttype

You should be able to simply copy these 10 plugins in the
{dominobin}/javaddin/rcp/eclipse/plugins directory from any installed version of Eclipse SDK. If you
do not have an eclipse SDK installed on your machine, you can download it from

http://www.osgi.org/Main/HomePage

http://www.eclipse.org/download (there are many flavors of the eclipse IDE in this page, if not sure
pick the “Eclipse IDE for Java Developers”).

The “org.openntf.domino.javaddin” plugin located in
{dominobin}/javaddin/shared/eclipse/plugins, is part of this prototype. This plugin is essential to
communicate between the javaddin server task and the server tasks plugins. Among other things,
it provides:

• The extension point that allows a user to register the server task
• The ServerTaskManager instance
• Tell commands implementation

A sample plugin called “org.openntf.javaddin.samples” is included in this prototype. This
sample contains a few server tasks to illustrate the different configurations available e.g.
Scheduled, runonce, run on startup, etc...

Source code:
The source code is included in the “sources” directory and contains the following files:

1. javaddin.cpp: contains the source code for the server task. To recompile it, you will need to
install the Notes/Domino C Api Toolkit available here:
http://www.ibm.com/developerworks/lotus/downloads/toolkits.html. Please
refer to the Notes/Domino C Api toolkit documentation for instructions on how to compile
javaddin.cpp.
Since javaddin.cpp makes use of the jni API, you will also need to install a JDK. For
example, you can download one at
http://java.sun.com/javase/downloads/index.jsp.

2. JavaddinExtMgr.cpp: contains the source code for the extension manager library that is
responsible for posting the events to the tasklet container for processing by the triggered
tasklets.

3. JavaddinNSFHook.cpp: contains the source code the the NSFDBHOOK library that is

Javaddin Process

Javaddin C code

1.Launch the jvm
2.Invoke launcher.jar to launch the
OSGi framework
3.Load the ServerTaskManager
4.Register native methods
5.Dispatch tell commands
6.Call addInDispatch in the main loop

JVM
launcher.jar OSGi container

OSGi core plugins

Javaddin core plugin

Server task
 plugins

JavaddinExtMgr library

1.Register extension manager events
2.Open Javaddin MessageQueue (Javaddin task must be loaded)
3.Extract event information and serialize it into a command buffer
4.Post Event Message to Javaddin MessageQueue
5.Close Javaddin MessageQueue

Profile A Profile B

http://java.sun.com/javase/downloads/index.jsp
http://www.ibm.com/developerworks/lotus/downloads/toolkits.html
http://www.eclipse.org/download

responsible for posting the NSFDbHook events to the tasklet container for processing by
the triggered tasklets.

4. org.openntf.osgi.launcher: Eclipse project containing the source code for launcher.jar which
is responsible for launching the OSGi framework. To compile it, it is recommended that you
install an Eclipse IDE and load the project in your workspace. Eclipse IDEs can be install
from http://www.eclipse.org/download.

5. org.openntf.javaddin.security: (since 1.5) Eclipse project containing the source code for the
dots security hook

6. org.openntf.javaddin: Eclipse project containing the source code the core javaddin plugin
7. org.openntf.javaddin.sample: Eclipse project containing the source code for sample server tasks.

Built code:
The built code is included in the “build” directory. In contains the following files:

1. dots.exe: executable that must be installed in {dominobin} directory
2. javaddinExtMgr.dll: extension manager library that must be installed if you have triggered

tasklets.
3. javaddinNSFHook.dll: NSF Hook library that must be installed if you have triggered tasklets.
4. launcher.jar: jar file that must be installed in {dominobin}/javaddin directory
5. dotssec.jar: jar file that must be installed in {dominobin}/javaddin directory
6. org.openntf.javaddin_1.0.0.XXXX.jar: jar file that must be installed in

{dominobin}/javaddin/shared/eclipse/plugins directory
7. org.openntf.javaddin.sample_1.0.0.XXXX.jar: jar file that must be installed in

{dominobin}/javaddin/shared/eclipse/plugins directory

New in 1.3: built win64 versions of dots.exe, javaddinExtMgr.dll and javaddinNSFHook.dll
are available in the win64 directory

New in 1.4: build linux32 and linux64 versions of dots, javaddinExtMgr and
javaddinNSFHook libraries are available respectively in the linux32 and linux64 directories

Typical install:

http://www.eclipse.org/download

To launch the Domino OSGi Tasklet Container, use the following command from the domino server
console: “load dots”

New in 1.4: You can now optionally specify an OSGi profile as a command line argument using
the -profile switch. This allows you to run multiple instances of the Domino OSGi tasklet container
in the same server.
The syntax to specify an OSGi profile is: load dots -profile [path] where [path] is the file path to a
local XML file. If the specified path is not absolute, then it is assumed to be relative to the
{dominoData} directory:
e.g: load dots -profile myprofile.xml

The OSGi profile XML must follow the following format:
<?xml version="1.0" encoding="UTF-8"?>
<osgiProfile mqName="profile1" workspaceName="workspace1">

<site url="file:mySite1/eclipse"/>
<site url="file:mySite2/eclipse"/>

</osgiProfile>

osgiProfile element: root element for the profile
mqName attribute: [Must be unique across profiles] Name of the Message Queue. This

name is used to identify the dots instance when executing commands: e.g. tell profile1 run …
workspaceName attribute: [Must be unique across profiles] Name used as the workspace

directory located under {dominodata}/domino directory.
site element: Optional element(s) defining eclipse locations to be contributed to the runtime of
the dots instance

url attribute: identifies the location of the eclipse location. Note: right now only file based url
are supported (e.g. file:mySite1/eclipse). In the future, we'll also support eclipse locations stored
in NSF databases.

Note:
If no profile is specified, then a default profile is used with the following values:
mqName: DOTS
workspaceName: workspace-javaddin
You can also modify the default values by creating an xml profile called dots.xml in your
{dominodata} directory.

Extra commands added to manage profiles
• show tasks: gives a list of all the dots instances and their MQName
• tell [profileMQName] showprofile: print information on the specified profile.
• tell [profileMQName] exit: terminate the specified instance of dots. We've added this

new command because using tell dots q would terminate all the instances of dots. Note: you
can also use tell [profileMQName] close.

New in 1.5: There is a new “osginsf” protocol supported by the site url attribute. This allows you to

include plugins stored in an NSF database as follow: osginsf:<path to the nsf database>
Optionally: you can specify a list of “feature” elements to include. If none is specified, then all the
features found in the database will be loaded. Note: in 1.5, the feature element only works with
“osginsf” sites and not with “file” sites.
Optionally: you can specify a list of “security” elements to configure permissions per site (more
info on security below in this document).
e.g.

<site url=”osginsf:myUpdateSite.nsf”>
<feature id=”feature1”/>
<feature id=”feature2”/>

</site>
Steps:

• Package your plugin(s) as an update Site. From eclipse, you will need to create a
feature project and an Update Site project. Please refer to eclipse documentation for details on
how to do that.

• Create myUpdateSite.nsf using the standard updateSite.ntf template.
• In MyUpdateSite.nsf, upload your update site using the “Import Local Update Site”

buttom:

Security
New in 1.5, for each “site” element, you can optionally specify a “security” child element,

which itself can have 2 types of child elements:
• “deny” element: list of permissions that are explicitly denied to the plugins of the site
• “allow” element: list of permissions that are explicitly allowed to the plugins to the site.
Note: you can disable security altogether by using disableSecurity=”true” attribute in the

osgiProfile root element.
Although you could specify both deny and allow element, in practice it make more sense to

specify only one of them based on the level of security you want to assign. Specifying only deny
means that the plugins have all permissions except the one declared in deny. In turn, specifying
only allow means that the plugins have no permission except the one declared in allow.

Each permission must be declared on a separate line. The syntax is similar to the Java 2
permission syntax:

<<Permission class name>> “<<target name>>” “<<actions>>”
Note: <<actions>> can be combined using a comma separator

for example:
<security>

<deny>
java.net.SocketPermission "www.ibm.com" "connect"
org.osgi.framework.BundlePermission "org.openntf.javaddin" "require"

java.io.FilePermission "<<ALL FILES>>" "read"
</deny>

</security>
or
<security>

<allow>
org.osgi.framework.BundlePermission "org.osgi.*" "require"
org.osgi.framework.BundlePermission "*" "provide,host,fragment"
java.io.FilePermission "/local/notesdata/*" "read"

</allow>
</security>

Every permission class define their own action, please refer the java sdk documentation for a
complete list of all the permissions and their actions.

What's interesting here is that you can also specify Permissions dedicated to OSGi plugins
and used by the OSGi Conditional Permission Admin Service (for more information on this
service, please refer to http://www.osgi.org). These permissions allow you to control things like
“preventing plugins to have a dependency on a particular plugin” or “preventing plugins to be a
fragment to a particular plugin”, etc...

The following table gives a complete list of all the OSGi Permissions and their associated
actions:

Permission Name Actions Target Method
org.osgi.framework.AdminPermission class None Bundle.loadClass

execute None Bundle.start
Bundle.stop
StartLevel.setBundleStartLevel

extensionLifecycle None BundleContext.installBundle for extension bundles
Bundle.update for extension bundles
Bundle.uninstall for extension bundles

lifecycle None BundleContext.installBundle
Bundle.update
Bundle.uninstall

listener None BundleContext.addBundleListener for
SynchronousBundleListener
BundleContext.removeBundleListener for
SynchronousBundleListener

metadata None Bundle.getHeaders
Bundle.getLocation

resolve None PackageAdmin.refreshPackages
PackageAdmin.resolveBundles

resource None Bundle.getResource
Bundle.getResources
Bundle.getEntry
Bundle.getEntryPaths
Bundle.findEntries
Bundle resource/entry URL creation

startlevel None StartLevel.setStartLevel
StartLevel.setInitialBundleStartLevel

context None Bundle.getBundleContext

org.osgi.framework.BundlePermission provide Bundle symbolic name. Wildcards may be used.
For example:
org.osgi.example.bundle
org.osgi.example.*

require

host

fragment

org.osgi.framework.PackagePermission Export (deprecated
use exportonly
instead)

Fully qualified package name

for example: org.osgi.service.http

exportonly

import

http://www.osgi.org/

org.osgi.framework.ServicePermission get Target: name of the service

The register action allows a bundle to register a service on the specified
names.
The get action allows a bundle to detect a service and get it.

register

Note: not specifying any “security” element to a site has a different meaning based on the site
protocol. For sites using the “file” protocol, the plugins run unrestricted. However, for sites using
the “osginsf” protocol, then a set a default allowed permissions is automatically assigned to the
plugins. The default allowed permisssions for “osginsf” sites are specified in the nsf.policy file
located in the org.openntf.osgi.launcher package:

 //List of default permissions for any NSF Based plugins
java.lang.RuntimePermission "stopThread"
// allows anyone to listen on un-privileged ports
java.net.SocketPermission "localhost:1024-" "listen"
// "standard" properies that can be read by anyone
java.util.PropertyPermission "java.version" "read"
java.util.PropertyPermission "java.vendor" "read"
java.util.PropertyPermission "java.vendor.url" "read"
java.util.PropertyPermission "java.class.version" "read"
java.util.PropertyPermission "os.name" "read"
java.util.PropertyPermission "os.version" "read"
java.util.PropertyPermission "os.arch" "read"
java.util.PropertyPermission "file.separator" "read"
java.util.PropertyPermission "path.separator" "read"
java.util.PropertyPermission "line.separator" "read"
java.util.PropertyPermission "java.specification.version" "read"
java.util.PropertyPermission "java.specification.vendor" "read"
java.util.PropertyPermission "java.specification.name" "read"
java.util.PropertyPermission "java.vm.specification.version" "read"
java.util.PropertyPermission "java.vm.specification.vendor" "read"
java.util.PropertyPermission "java.vm.specification.name" "read"
java.util.PropertyPermission "java.vm.version" "read"
java.util.PropertyPermission "java.vm.vendor" "read"
java.util.PropertyPermission "java.vm.name" "read"
java.util.PropertyPermission "javax.realtime.version" "read"
//OSGi specific permissions
org.osgi.framework.BundlePermission "org.eclipse.*" "require"
org.osgi.framework.BundlePermission "org.osgi.*" "require"
org.osgi.framework.BundlePermission "org.openntf.javaddin" "require"
org.osgi.framework.PackagePermission "org.eclipse.*" "import"
org.osgi.framework.PackagePermission "org.osgi.*" "import"
org.osgi.framework.PackagePermission "lotus.domino" "import"

For some OSGi framework permissions, you may not get a visible exception in the console. For
example, if a bundle doesn't have the correct require BundlePermission, then this bundle will not
load correctly and will have the installed state:

Remote Controller
New in 1.5: you can specify a remoteCommands element as a child of the osgiProfile root

element as follow:
<osgiProfile>

…
<remoteCommands type=”embedded” port=”1234”/>
….

</osgiProfile>

type: indicate the type remoteCommands. Only “embedded” is supported today, which open a
socket on port specified by the port attribute and listen to remote OSGi console commands
requests.

port: port number used by the remote Command controller. If none specified, then DOTS will
use any free port. A transient file called port.txt containing the port number in use will be created
for the duration of the session. This file is located in the workspace directory for the dots instance.
Remote applications can open this file to know which port to use to issue remote requests.

For security reasons, only request coming from the local machines are authorized.
The following shows a sample client code to issue remote OSGi commands to DOTS:

private static String sendDotsRequest(String command) throws Exception {
 //1234 is the port specified in the profile

Socket socket = new Socket("localhost", 1234);
socket.getOutputStream().write(command.getBytes());
socket.shutdownOutput();
socket.setSoTimeout(3000); //Timeout to 3 s
InputStream is = socket.getInputStream();
StringBuilder sb = new StringBuilder(1024);
int c;
while ((c = is.read()) != -1){

sb.append((char)c);
}
socket.close();
return sb.toString();

 }

Dots tell commands:
help: Display this help
close/exit: Close the current instance of the Domino OSGi Tasklet Container
tasklist: Display list of OSGi server tasks
run [taskid]: Run the task once specified by the task id
info [taskid]: Display detailed information about the task
status: Display information about the tasks being run
cancel: Cancel the current task.

Examples:

New in 1.3: you can now use regular expressions as an argument to the list command e.g.
tell dots list org.openntf.*

Description of the org.openntf.javaddin.task extension point:
A detailed description of the “org.openntf.javaddin.task” extension point is availble in the

pde_schema_org-openntf-javaddin-task_preview.html file included in the distribution zip file.

The “org.openntf.javaddin.task” extension point requires a class that must extends
org.openntf.javaddin.task.AbstractServerTask. In this class, the user must override the following methods:

/**
 * @param serverTaskInfo
 * Called before the task is ready to run
 * Note: a default implementation is provided in AbstractServerTask, subclasses

must call super if overriding this method */
public void init(ServerTaskInfo serverTaskInfo);
/**
 * @param runWhen
 * @param args: command line arguments
 * @param monitor
 * @throws NotesException
 */
public void run(RunWhen runWhen, String[] args, IProgressMonitor monitor) throws

NotesException;
/**
 * Called when the task instance is being discarded
 * Task should recycle any created backend objects
 */
public void dispose() throws NotesException;

The IProgressMonitor argument can be used to notify the tasklet container of the progress of the current
task, but also to be notified if the user wants to cancel the current task. The ListViewExample tasklet
illustrate how a long running tasklet uses the IProgressMonitor:
/* (non-Javadoc)

 * @see
org.openntf.javaddin.task.IServerTaskRunnable#run(org.openntf.javaddin.task.Run
When, java.lang.String[], org.eclipse.core.runtime.IProgressMonitor)

 */
public void run(RunWhen runWhen, String[] args, IProgressMonitor monitor)

throws NotesException {
....

Vector<?> views = db.getViews();
monitor.beginTask("List the views", views.size());
logMessage("List of views for db: " + db.getTitle());
for (Object view : views){

if (monitor.isCanceled()){
break;

}
logMessage("\t" + ((View)view).getName());
try {

Thread.sleep(1000);
} catch (InterruptedException e) {

e.printStackTrace();
}
monitor.worked(1);

}
...

}

For more information, please look at the sample tasks provided in “org.openntf.javaddin.sample” plugin.
New in 1.3: You can now use the AbstractServerTaskExt as the base class of your tasklet, which give you
support for keyed arguments via the following methods:

/**
 * @param key
 * @return: the value for the keyed argument
 */
public String getKeyedArgument(String key)
/**

 * @param n
 * @return: the Nth arguments as it was passed to the task by the user
 */
public String getNthArgument(int n)

Description of the org.openntf.javaddin.multitask extension point:
New in 1.3, the new alias extension point allows you to create a new task by combining existing
tasks. This can be very useful for example if you need to build automated test suites that run
multiple tasks
For example:
<extension point="org.openntf.javaddin.multitask">
 <multiTask
 id="org.openntf.sample.multiTask1">
 <taskRef id="org.openntf.sample.sendMail">
 <param name="to" value="john.smith@acme.com"/>
 <param name="cc" value="fred.manager@acme.com"/>
 </taskRef>
 <taskRef id="org.openntf.sample.sendMail">
 <param name="to" value="ted.smith@acme.com"/>
 <param name="bcc" value="bill.vp@acme.com"/>
 </taskRef>
 <taskRef id="org.openntf.sample.sendMail">
 <param name="to" value="al.smith@acme.com"/>
 </taskRef>
 </multiTask>
 </extension>

A multitask extension point is composed of one or more taskRef elements that point to an existing
task. For each taskRef element, you can pass one or more param (key/value pair), these params
element can also be dynamic using the following notation: {var}. Dynamic variables can be
resolved using the argResolver extension point (see org.openntf.sample plugin for an example on
how to use the argResolver extension point)

Description of the org.openntf.javaddin.alias extension point:
New in Javaddin 1.2.0, the new alias extension point allows you to configure a task with predefined
arguments
For example:
<extension point="org.openntf.javaddin.alias">
 <alias id="sendMailtoJohn"

targetTask="org.openntf.sample.sendMail"
description="Send a mail to John">

 <arg name="johndoe@acme.com" value=""/>
 </alias>
</extension>
You can check the list of aliases currently installed by using the following command:
tell javaddin aliases

Description of the org.openntf.javaddin.startup extension point:
New in Javaddin 1.2.0, you can automatically start a plugin by using the org.openntf.javaddin.startup
extension point.
For example:
 <extension point="org.openntf.javaddin.startup">
 <startup class="org.openntf.sample.Startup"/>
 </extension>

The Sartup class must implement the org.openntf.javaddin.startup.IStartup interface:
 public interface IStartup {

/**
 * Method called just after the plugin has been activated
 */
public void earlyStartup();

 }

Support for extension Manager events:
New in Javaddin 1.1, you can use the “triggered” attribute when declaring the tasklet in the plugin.xml.

When doing so, the task run method will be called when one of the supported extension manager events
occur. It is important to understand that the task is not called synchronously when the even occurs, rather a
message containing information about the event is posted to Javaddin task container. In turn, Javaddin will
service the event as soon as possible. So you cannot use this mechanism to affect the outcome of the
extension manager, but it provides a nice mechanism to trigger a task based on an event rather than polling.

To work, you must install the javaddin extension manager library provided in the distribution zip by
adding the following line to notes.ini:

EXTMGR_ADDINS=javaddinExtMgr.dll

The TriggeredExample tasklet illustrate how to use “triggered” attribute:
In plugin.xml:

 <task id="org.openntf.sample.triggered"
 description="Sample task triggered by Extension manager events"
 class="org.openntf.javaddin.sample.TriggeredExample"
 runOnStart="false"
 triggered="true">
 </task>

When the task is event triggered, the RunWhen object contains an IextensionManagerEvent object that
can be used to access information about the event.

In TriggeredExample.java:
public void run(RunWhen runWhen, String[] args, IProgressMonitor monitor)throws
NotesException {

if (runWhen.getUnit() != RunUnit.triggered){
//We only support triggered events

mailto:johndoe@acme.com

return;
}
IExtensionManagerEvent event = runWhen.getExtensionManagerEvent();
if (event.getEventId() == IExtensionManagerEvent.EM_NSFNOTEUPDATEXTENDED){

NSFNoteUpdateExtendedEvent updateEvent = (NSFNoteUpdateExtendedEvent)event;
...

}else if (event.getEventId() == IExtensionManagerEvent.EM_NSFDBCREATE){
NSFDbCreateEvent dbCreateEvent = (NSFDbCreateEvent)event;
logMessage("Trigger event: EM_NSFDBCREATE with dbPath = " +

dbCreateEvent.getDbPath());

}else if (event.getEventId() == IExtensionManagerEvent.EM_NSFDBDELETE){
NSFDbDeleteEvent dbDeleteEvent = (NSFDbDeleteEvent)event;
logMessage("Trigger event: EM_NSFDBDELETE with dbPath = " +

dbDeleteEvent.getDbPath());

}else if (event.getEventId() == IExtensionManagerEvent.EM_NSFNOTEDELETE){
NSFNoteDeleteEvent noteDeleteEvent = (NSFNoteDeleteEvent)event;
logMessage(

MessageFormat.format("Trigger event: EM_NSFNOTEDELETE with dbPath = {0}
and NoteId {1}",

noteDeleteEvent.getDbPath(), noteDeleteEvent.getNoteId()
)

);
}

}

If you want to know the list of events currently supported, please look in the javaddinExtMgr.cpp source
code provided in the distribution zip

New in Javaddin 1.2, enhanced list of supported extension manager events. Please look in the source
code of each event class to know the available fields.
Extension Manager Event Associated Java class

EM_NSFDBCLOSE NSFDbCloseEvent

EM_NSFNOTEUPDATE NSFNoteUpdateExtendedEvent

EM_NSFNOTEUPDATEXTENDED NSFNoteUpdateExtendedEvent

EM_NSFDBCREATE NSFDbCreateEvent

EM_NSFDBDELETE NSFDbDeleteEvent

EM_NSFNOTECREATE NSFNoteCreateEvent

EM_NSFNOTEDELETE NSFNoteDeleteEvent

EM_ADMINPPROCESSREQUEST AdminPProcessRequestEvent

EM_NSFNOTEOPEN NSFNoteOpenEvent

EM_NSFNOTECLOSE NSFNoteCloseEvent

EM_NSFNOTEOPENBYUNID NSFNoteOpenByUNIDEvent

EM_FTINDEX FTIndexEvent

EM_FTSEARCH FTSearchEvent

EM_NIFFINDBYKEY NIFFindByKeyEvent

EM_NIFFINDBYNAME NIFFindByNameEvent

EM_NIFOPENNOTE NIFOpenNoteEvent

EM_NIFREADENTRIES NIFReadEntriesEvent

EM_NIFUPDATECOLLECTION NIFUpdateCollectionEvent

EM_NSFDBCOMPACT NSFDbCompactEvent

EM_NSFDBDELETENOTES NSFDbDeleteNotesEvent

EM_NSFDBWRITEOBJECT NSFDbWriteObjectEvent

EM_NIFOPENCOLLECTION NIFOpenCollectionEvent

EM_NIFCLOSECOLLECTION NIFCloseCollectionEvent

EM_NSFDBRENAME NSFDbRenameEvent

EM_NSFDBREOPEN NSFDbReopenEvent

EM_NSFDBOPENEXTENDED NSFDbOpenExtendedEvent

EM_NSFNOTEOPENEXTENDED NSFNoteOpenExtendedEvent

EM_TERMINATENSF TerminateNSFEvent

EM_NSFNOTEDECRYPT NSFNoteDecryptEvent

EM_NSFCONFLICTHANDLER NSFConflictHandlerEvent

EM_MAILSENDNOTE MailSendNoteEvent

EM_CLEARPASSWORD ClearPasswordEvent

EM_SCHFREETIMESEARCH, SCHFreeTimeSearchEvent

EM_SCHRETRIEVE, SCHRetrieveEvent

EM_SCHSRVRETRIEVE, SCHSrvRetrieveEvent

EM_NSFDBCOMPACTEXTENDED, NSFDbCompactEvent

EM_NSFDBCOPYNOTE, NSFDbCopyNoteEvent

EM_NSFNOTECOPY, NSFNoteCopyEvent

EM_NSFNOTEATTACHFILE, NSFNoteAttachFileEvent

EM_NSFNOTEDETACHFILE, NSFNoteDetachFileEvent

EM_NSFNOTEEXTRACTFILE, NSFNoteExtractFileEvent

EM_NSFDBCOPY, NSFDbCopyEvent

EM_NSFDBCREATEANDCOPY, NSFDbCreateAndCopyEvent

EM_NSFDBCOPYACL, NSFDbCopyACLEvent

EM_NSFDBCOPYTEMPLATEACL, NSFDbCopyTemplateACLEvent

EM_NSFDBCREATEACLFROMTEMPLATE NSFDbCreateACLFromTemplateEvent

EM_FTDELETEINDEX FTDeleteIndexEvent

EM_FTSEARCHEXT, FTSearchExtEvent

EM_NAMELOOKUP, NameLookupEvent

EM_NSFNOTEUPDATEMAILBOX, NSFNoteUpdateMailBoxEvent

EM_AGENTOPEN, AgentOpenEvent

EM_AGENTRUN, AgentRunEvent

EM_AGENTCLOSE, AgentCloseEvent

EM_SECAUTHENTICATION, SECAuthenticationEvent

EM_NAMELOOKUP2, NameLookup2Event

EM_NSFADDTOFOLDER, NSFAddToFolderEvent

EM_ROUTERJOURNALMESSAGE, RouterJournalMessageEvent

EM_SMTPCONNECT, SMTPConnectEvent

EM_SMTPCOMMAND, SMTPCommandEvent

EM_SMTPMESSAGEACCEPT, SMTPMessageAcceptEvent

EM_SMTPDISCONNECT, SMTPDisconnectEvent

EM_NSFARCHIVECOPYNOTES, NSFArchiveCopyNotesEvent

EM_NSFARCHIVEDELETENOTES, NSFArchiveDeleteNotesEvent

EM_MEDIARECOVERY_NOTE, MediaRecoveryEvent

EM_NSFNOTECIPHERDECRYPT, NSFNoteCipherDecryptEvent

EM_NSFNOTECIPHEREXTRACTFILE NSFNoteCipherExtractFileEvent

EM_NSFDBNOTELOCK NSFDbNoteLockEvent

EM_NSFDBNOTEUNLOCK NSFDbNoteUnlockEvent

HOOK_EVENT_NOTE_UPDATE NSFHookNoteUpdateEvent

HOOK_EVENT_NOTE_OPEN NSFHookNoteOpenEvent

Support for NSFDBHOOK events:
New in Javaddin 1.2, similar to extension manager events, the “triggered” attribute can also be used for

NSFDBHOOK events. To enable it, you must install the javaddin NSFDBHOOK library provided in the
distribution zip by adding the following line to notes.ini:

NSF_HOOKS=javaddinNSFHook

NSFDBHOOK Event Associated Java class

HOOK_EVENT_NOTE_UPDATE NSFHookNoteUpdateEvent

HOOK_EVENT_NOTE_OPEN NSFHookNoteOpenEvent

Setting up the dev environment to work with the sample plugin:
The recommended version for the Eclipse sdk : 3.5.1

1. Import the source code for the sample project org.openntf.javaddin.sample located in the
sources directory: use file\import menu, and select “General\Existing projects into Workspace”.
In the next page use “select root directory:” radio button, then use the browser button to load
the sample project directory. Note: Make sure to check the “Copy projects into workspace”.

2. Set up the target platform: Use Windows\Preferences\Plug-in development\Target Platform
and add the following 2 locations {dominobin}/javaddin/rcp/eclipse and
{dominobin}/javaddin/shared/eclipse. The following screen shot shows how your target
platform should look like:

3. Note: Notes.jar is automatically made available via a fragment to the system bundle at runtime,
but not at compile time. To fix this problem, you need to add the notes.jar to the JRE and add a
dummy plugin to the target platform that exports the lotus.domino package.

1. Add Notes.jar to the JRE settings: Use Windows/Preferences and type JRE in the filter
text

Select the Edit button and use the "Add External Jars" button
Browse to the Domino JVM directory under lib\ext, and select the Notes.jar:

Note: In some cases, you may have Access Restriction errors on lotus.domino
packages, this is because some plugin specify an Execution-Environment of 1.5 in the
manifest. To fix this problem, you can do the following: use
Windows\preferences\Java\Compiler\Errors-Warnings\Deprecated and resticted API
and select Ignore in the Forbidden references (access rules) field

2. Import the “notes.java.api.sdk” plugin located in the build directory: use file\import menu
and select “Plug-ins and Fragments”:

Click next. In the Import from section, use “Directory” radio button and select the build
directory where you unzip the prototype code e.g. C:\prototype\build:

click next, double click on notes.java.api.sdk to add it to the list on the right:

click finish. You should have a new project called notes.java.api.sdk on your
workspace.

3. Click OK. You should now compile the sample project without error. The next step is to
deploy the project as a jar (using file\export deployable plugins and fragments). Deploy
the jar in {dominodata}/domino\workspace-javaddin\applications\eclipse\plugins: Use
file\export and select “Plugin development/deployable plug-ins and fragments”

click next, select the plugin you want to deploy. Use the “directory” radio button and
specify “c:/{dominobin}/javaddin/shared/eclipse” as the directory. (Note: the export
dialog box will automatically add the plugins directory so you don't have to specify it.

4. At this point, the sample plugin is deployed, you must restart the javaddin task to be
loaded again.

5. You can verify that it is loaded correctly by using the osgi console.

file:///C:/domino/javaddin/shared/eclipse

In the domino server console, simply type:
tell dots ss
You should see the following:

If all goes well, you should see the org.openntf.javaddin.sample plugin in the list.
Type the following command: tell dots diag org.openntf.javaddin.sample

Debugging your server task plugin
Start the jvm in debug mode by using the following parameters:
load dots -debugaddress=<port> -debugsuspend=<y/n>

-debugaddress: connection port for the java debugger (usually 8000)
-debugsuspend: if y, then the jvm is start in suspend mode and resumes only when a
debugger attaches to it. This is useful to debug starting code. Default is n

New in 1.3: you can use notes.ini variable to automatically set debugaddress and
debugsuspend as follow:
JAVADDIN_DEBUGADDRESS=8001
JAVADDIN_DEBUGSUSPEND=y

In eclipse dev environment, create a debug configuration (use run\debug configurations...
menu) for javaddin using the same port used to start the jvm in debug mode, i.e. if port is
8000:

Once the debugger is attached, you can set a breakpoint in your server task and run it
manually on the server using: tell dots run <taskid>.

Using the IBM Lotus Domino Debug plugin
This tool, available as a tool project on openntf.org, removes the need for exporting and

deploying the custom plugins by configuring the Javaddin runtime to load the plugin classes
directly from the Eclipse workspace. To install the tool on Eclipse IDE (3.4, 3.5 or 3.6), please
consult the documentation available in the openntf tool project.

1. Create an OSGi debug configuration for Domino: use menu run\debug
configuration, right click on OSGi Configuration entry and select new

2. Use the following options:
-Framework combo box: select “Domino Tasklet Framework (dots)”
-Default Auto-Start: select false

3. From the Workspace plugins select the plugins you want to enable. It is
recommended to de-select all the plugins in the target platform, the tool will
automatically add them from the Domino Install

4. Click debug, you should see the following dialog box that lets you configure
where the Domino Server is installed.

5. Click OK, and if all goes well you should see the following dialog box.

6. Next, you need to verify that the plugins are correctly loaded in the Dots
framework runtime. In the domino server, restart the dots task:
>restart task dots
>tell dots ss : You should see a list of all the plugins loaded in the runtime
7. Assuming that the plugin com.acme.myplugin is a plugin you wanted to

load from your workspace, use the following command to verify that it is the case
>tell dots diag com.acme.myplugin

Caveats:
1. It is very likely that it will not work on IBM i platforms as the JRE is provided by the OS and

the code currently assumes that it is located under {dominobin} directory

Possible future enhancements:
1. Allow multiple instances of javaddin (done in 1.4 using OSGi profiles)
2. Allow plugin to provide credentials for the domino session used to run the task
3. Ability to programmatically change the schedule of a task
4. Possible OSGi Profile Enhancements:

1. Support NSF Based features/plugins in site element.
2. Specify selected features in the site element
3. Add security to site elements. This will become particularly important when NSF Based

plugins are supported
5. Add Remote OSGi service as a type of remote commands controller

